Skip to content

Latest commit

 

History

History
70 lines (52 loc) · 2.61 KB

5.DALI数据加载优化(optional).md

File metadata and controls

70 lines (52 loc) · 2.61 KB

4. 使用 NVIDIA DALI 加速数据加载

NVIDIA DALI(Data Loading Library)是一个高效的数据加载和预处理库,专为深度学习任务设计。它可以减轻数据加载和预处理对 CPU 的压力,从而提高 GPU 的利用率。

安装 DALI

可以通过 pip 安装 NVIDIA DALI:

pip install nvidia-dali  

使用 DALI 加速数据加载

下面是一个使用 DALI 加速数据加载的示例:

  1. 定义 DALI 数据管道:

    from nvidia.dali.pipeline import Pipeline  
    import nvidia.dali.ops as ops  
    import nvidia.dali.types as types  
    
    class MelGANDatasetPipeline(Pipeline):  
        def __init__(self, batch_size, num_threads, device_id, data_dir):  
            super(MelGANDatasetPipeline, self).__init__(batch_size, num_threads, device_id)  
            self.input = ops.FileReader(file_root=data_dir, random_shuffle=True)  
            self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)  
            self.res = ops.Resize(device="gpu", resize_x=224, resize_y=224)  
            self.cmnp = ops.CropMirrorNormalize(device="gpu",  
                                                output_dtype=types.FLOAT,  
                                                output_layout=types.NCHW,  
                                                image_type=types.RGB,  
                                                mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],  
                                                std=[0.229 * 255, 0.224 * 255, 0.225 * 255])  
    
        def define_graph(self):  
            self.jpegs, self.labels = self.input(name="Reader")  
            images = self.decode(self.jpegs)  
            images = self.res(images)  
            output = self.cmnp(images)  
            return output, self.labels  
  2. 创建 DataLoader:

    from nvidia.dali.plugin.pytorch import DALIGenericIterator  
    
    batch_size = 32  
    pipeline = MelGANDatasetPipeline(batch_size=batch_size, num_threads=4, device_id=0, data_dir="/path/to/your/data")  
    pipeline.build()  
    
    dali_dataloader = DALIGenericIterator(pipeline, ["data", "label"], size=pipeline.epoch_size("Reader"))  
  3. 在训练和推理过程中使用 DALI DataLoader:

    for data in dali_dataloader:  
        inputs = data[0]["data"].cuda(non_blocking=True)  
        labels = data[0]["label"].cuda(non_blocking=True)  
    
        # 训练或推理步骤  
        outputs = model(inputs)  
        loss = criterion(outputs, labels)  
        loss.backward()  
        optimizer.step()