-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbootstrap_train_aae_supervised_new.py
331 lines (263 loc) · 14.3 KB
/
bootstrap_train_aae_supervised_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env python3
"""Script to train the deterministic supervised adversarial autoencoder."""
from pathlib import Path
import random as rn
import time
import pandas as pd
import joblib
from sklearn.preprocessing import RobustScaler, OneHotEncoder
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from utils import COLUMNS_NAME, load_dataset
from models import make_encoder_model_v1, make_decoder_model_v1, make_discriminator_model_v1
import torch
from torch.distributions import Normal
from torch.nn import Parameter
import tensorflow_probability as tfp
tfd = tfp.distributions
import os
import argparse
PROJECT_ROOT = Path.cwd()
tf.config.run_functions_eagerly(True)
def main(comb_label, hz_para_list):
"""Train the normative method on the bootstrapped samples.
The script also the scaler and the demographic data encoder.
"""
# ----------------------------------------------------------------------------
n_bootstrap = 10
model_name = 'supervised_aae_new'
participants_path = PROJECT_ROOT / 'data' / 'ADNI_TRAIN' / 'participants.tsv'
freesurfer_path = PROJECT_ROOT / 'data' / 'ADNI_TRAIN' / 'freesurferData.csv'
# ----------------------------------------------------------------------------
bootstrap_dir = PROJECT_ROOT / 'outputs' / 'bootstrap_analysis'
ids_dir = bootstrap_dir / 'ids'
model_dir = bootstrap_dir / model_name
model_dir.mkdir(exist_ok=True)
# ----------------------------------------------------------------------------
# Set random seed
random_seed = 42
tf.random.set_seed(random_seed)
np.random.seed(random_seed)
rn.seed(random_seed)
ae_loss_list = [0]*200
dc_loss_list = [0]*200
gen_loss_list = [0]*200
#Monte Carlo Sample Loop K
k = 0
for i_bootstrap in range(n_bootstrap):
ids_filename = 'cleaned_bootstrap_{:03d}.csv'.format(i_bootstrap)
ids_path = ids_dir / ids_filename
bootstrap_model_dir = model_dir / '{:03d}'.format(i_bootstrap)
bootstrap_model_dir.mkdir(exist_ok=True)
print("########################---",ids_filename,"---########################")
# ----------------------------------------------------------------------------
# Loading data
dataset_df = load_dataset(participants_path, ids_path, freesurfer_path)
# ----------------------------------------------------------------------------
dataset_df = dataset_df.loc[dataset_df['Diagnosis'] == 1]
x_data = dataset_df[COLUMNS_NAME].values
tiv = dataset_df['EstimatedTotalIntraCranialVol'].values
tiv = tiv[:, np.newaxis]
x_data = (np.true_divide(x_data, tiv)).astype('float32')
#tv = dataset_df['TotalVar'].values
#tv = tv[:, np.newaxis]
#x_data_1 = (np.true_divide(x_data[:,:100], tiv)).astype('float32')
#x_data_2 = (np.true_divide(x_data[:,100:], tv)).astype('float32')
#x_data = np.concatenate((x_data_1, x_data_2), axis=1)
scaler = RobustScaler()
x_data_normalized = scaler.fit_transform(x_data)
np.save("x_train", x_data_normalized)
#x_data_normalized = x_data
# ----------------------------------------------------------------------------
age = dataset_df['Age'].values[:, np.newaxis].astype('float32')
#enc_age = OneHotEncoder(sparse=False)
enc_age = OneHotEncoder(handle_unknown = "ignore",sparse=False)
one_hot_age = enc_age.fit_transform(age)
gender = dataset_df['Gender'].values[:, np.newaxis].astype('float32')
enc_gender = OneHotEncoder(sparse=False)
one_hot_gender = enc_gender.fit_transform(gender)
bin_labels = list(range(0,10))
#age_bins_train, bin_edges = pd.cut(dataset_df['Age'], 10, retbins=True, labels=bin_labels)
#age_bins_train.fillna(0, inplace=True)
#one_hot_age = np.eye(10)[age_bins_train.values]
ICV_bins_train, bin_edges = pd.qcut(dataset_df['EstimatedTotalIntraCranialVol'], q=10, retbins=True, labels=bin_labels)
ICV_bins_train.fillna(0, inplace = True)
one_hot_ICV_train = np.eye(10)[ICV_bins_train.values]
if comb_label == 1:
y_data = np.concatenate((one_hot_age, one_hot_gender), axis=1).astype('float32')
elif comb_label == 2:
y_data = np.concatenate((one_hot_age, one_hot_ICV_train), axis=1).astype('float32')
elif comb_label == 3:
y_data = np.concatenate((one_hot_gender,one_hot_ICV_train), axis=1).astype('float32')
else:
y_data = np.concatenate((one_hot_age, one_hot_gender,one_hot_ICV_train), axis=1).astype('float32')
#y_data = np.concatenate((one_hot_age), axis=1).astype('float32')
#y_data = one_hot_age.astype('float32')
# -------------------------------------------------------------------------------------------------------------
# Create the dataset iterator
batch_size = 256
n_samples = x_data.shape[0]
train_dataset = tf.data.Dataset.from_tensor_slices((x_data_normalized, y_data))
train_dataset = train_dataset.shuffle(buffer_size=n_samples)
train_dataset = train_dataset.batch(batch_size)
# -------------------------------------------------------------------------------------------------------------
# Create models
n_features = x_data_normalized.shape[1]
n_labels = y_data.shape[1]
h_dim = [hz_para_list[0], hz_para_list[1]]
z_dim = hz_para_list[2]
encoder = make_encoder_model_v1(n_features, h_dim, z_dim)
decoder = make_decoder_model_v1(z_dim+n_labels, n_features, h_dim)
discriminator = make_discriminator_model_v1(z_dim, h_dim)
# -------------------------------------------------------------------------------------------------------------
# Define loss functions
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
mse = tf.keras.losses.MeanSquaredError()
accuracy = tf.keras.metrics.BinaryAccuracy()
def discriminator_loss(real_output, fake_output):
loss_real = cross_entropy(tf.ones_like(real_output), real_output)
loss_fake = cross_entropy(tf.zeros_like(fake_output), fake_output)
return loss_fake + loss_real
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
def compute_ll(x, x_recon):
return tf.reduce_mean(tf.reduce_sum(x_recon.log_prob(x), 1, keepdims=True), 0)
def calc_ll(x, x_recon):
return compute_ll(x, x_recon)
# -------------------------------------------------------------------------------------------------------------
# Define optimizers
base_lr = 0.0001
max_lr = 0.005
step_size = 2 * np.ceil(n_samples / batch_size)
ae_optimizer = tf.keras.optimizers.Adam(lr=base_lr)
dc_optimizer = tf.keras.optimizers.Adam(lr=base_lr)
gen_optimizer = tf.keras.optimizers.Adam(lr=base_lr)
tmp_noise_par = tf.fill([1, n_features], -3.0)
# -------------------------------------------------------------------------------------------------------------
# Training function
alpha = 5
@tf.function
def train_step(batch_x, batch_y, pre, total):
# -------------------------------------------------------------------------------------------------------------
# Autoencoder
with tf.GradientTape() as ae_tape:
z_mean, z_log_var, z = encoder(batch_x, training=True)
#z = encoder(batch_x, training=True)
#encoder_output = encoder(batch_x, training=True)
decoder_output = decoder(tf.concat([z, batch_y], axis=1), training=True)
ae_loss = mse(batch_x, decoder_output)
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
total_loss = alpha*ae_loss + kl_loss
ae_grads = ae_tape.gradient(total_loss, encoder.trainable_variables + decoder.trainable_variables)
ae_optimizer.apply_gradients(zip(ae_grads, encoder.trainable_variables + decoder.trainable_variables))
# -------------------------------------------------------------------------------------------------------------
# Discriminator
with tf.GradientTape() as dc_tape:
real_distribution = tf.random.normal([batch_x.shape[0], z_dim], mean=0.0, stddev=1.0)
_, _, encoder_output = encoder(batch_x, training=True)
#encoder_output = encoder(batch_x, training=True)
dc_real = discriminator(real_distribution, training=True)
dc_fake = discriminator(encoder_output, training=True)
# Discriminator Loss
dc_loss = discriminator_loss(dc_real, dc_fake)
# Discriminator Acc
dc_acc = accuracy(tf.concat([tf.ones_like(dc_real), tf.zeros_like(dc_fake)], axis=0),
tf.concat([dc_real, dc_fake], axis=0))
dc_grads = dc_tape.gradient(dc_loss, discriminator.trainable_variables)
dc_optimizer.apply_gradients(zip(dc_grads, discriminator.trainable_variables))
# -------------------------------------------------------------------------------------------------------------
# Generator (Encoder)
with tf.GradientTape() as gen_tape:
_, _, encoder_output = encoder(batch_x, training=True)
#encoder_output = encoder(batch_x, training=True)
dc_fake = discriminator(encoder_output, training=True)
# Generator loss
gen_loss = generator_loss(dc_fake)
gen_grads = gen_tape.gradient(gen_loss, encoder.trainable_variables)
gen_optimizer.apply_gradients(zip(gen_grads, encoder.trainable_variables))
return ae_loss, kl_loss, total_loss, dc_loss, dc_acc, gen_loss
#return ae_loss, total_loss, dc_loss, dc_acc, gen_loss
#return _loss, dc_loss, dc_acc, gen_loss
# -------------------------------------------------------------------------------------------------------------
# Training loop
global_step = 0
n_epochs = 200
gamma = 0.98
scale_fn = lambda x: gamma ** x
for epoch in range(n_epochs):
start = time.time()
epoch_ae_loss_avg = tf.metrics.Mean()
epoch_kl_loss_avg = tf.metrics.Mean()
epoch_total_loss_avg = tf.metrics.Mean()
epoch_dc_loss_avg = tf.metrics.Mean()
epoch_dc_acc_avg = tf.metrics.Mean()
epoch_gen_loss_avg = tf.metrics.Mean()
total = 0
pre = 0
for _, (batch_x, batch_y) in enumerate(train_dataset):
global_step = global_step + 1
cycle = np.floor(1 + global_step / (2 * step_size))
x_lr = np.abs(global_step / step_size - 2 * cycle + 1)
clr = base_lr + (max_lr - base_lr) * max(0, 1 - x_lr) * scale_fn(cycle)
ae_optimizer.lr = clr
dc_optimizer.lr = clr
gen_optimizer.lr = clr
#batch_x = tf.concat([batch_x, batch_y], axis=1)
#print(batch_x.shape, batch_y.shape)
total += batch_x.shape[0]
ae_loss, kl_loss, total_loss, dc_loss, dc_acc, gen_loss = train_step(batch_x, batch_y, pre, total)
pre += batch_x.shape[0]
#ae_loss, total_loss, dc_loss, dc_acc, gen_loss = train_step(batch_x, batch_y)
#ae_loss, dc_loss, dc_acc, gen_loss = train_step(batch_x, batch_y)
epoch_ae_loss_avg(ae_loss)
epoch_kl_loss_avg(kl_loss)
epoch_total_loss_avg(total_loss)
epoch_dc_loss_avg(dc_loss)
epoch_dc_acc_avg(dc_acc)
epoch_gen_loss_avg(gen_loss)
#print(len(mean_list), mean_list[i_bootstrap].shape)
epoch_time = time.time() - start
print('{:4d}: TIME: {:.2f} ETA: {:.2f} AE_LOSS: {:.4f} KL_LOSS: {:.4f} TOTAL_LOSS: {:.4f} DC_LOSS: {:.4f} DC_ACC: {:.4f} GEN_LOSS: {:.4f}' \
.format(epoch, epoch_time,
epoch_time * (n_epochs - epoch),
epoch_ae_loss_avg(ae_loss),
epoch_kl_loss_avg(kl_loss),
epoch_total_loss_avg(total_loss),
epoch_dc_loss_avg(dc_loss),
epoch_dc_acc_avg(dc_acc),
epoch_gen_loss_avg(gen_loss)
))
ae_loss_list[epoch] += epoch_ae_loss_avg(ae_loss)
dc_loss_list[epoch] += epoch_dc_loss_avg(dc_loss)
gen_loss_list[epoch] += epoch_gen_loss_avg(gen_loss)
# Save models
encoder.save(bootstrap_model_dir / 'encoder.h5')
decoder.save(bootstrap_model_dir / 'decoder.h5')
discriminator.save(bootstrap_model_dir / 'discriminator.h5')
# Save scaler
joblib.dump(scaler, bootstrap_model_dir / 'scaler.joblib')
joblib.dump(enc_age, bootstrap_model_dir / 'age_encoder.joblib')
joblib.dump(enc_gender, bootstrap_model_dir / 'gender_encoder.joblib')
joblib.dump(one_hot_ICV_train, bootstrap_model_dir / 'icv_encoder.joblib')
ae_loss_array = np.array(ae_loss_list)
dc_loss_array = np.array(dc_loss_list)
gen_loss_array = np.array(gen_loss_list)
ae_loss_array = np.divide(ae_loss_array, n_bootstrap)
dc_loss_array = np.divide(dc_loss_array, n_bootstrap)
gen_loss_array = np.divide(gen_loss_array, n_bootstrap)
epoch = range(1, 201)
plt.plot(epoch, ae_loss_array, 'g', label = 'TOTAL loss')
plt.plot(epoch, dc_loss_array, 'b', label = 'DC loss')
plt.plot(epoch, gen_loss_array, 'r', label = 'GEN loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
# plt.show()
plt.savefig('loss in aae s new 2.png')
# print("everything alright")
if __name__ == "__main__":
a = 0
b = [110,110,10]
main(a, b)