forked from Houliang-Zhou/InterpretableGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImbalanced.py
59 lines (46 loc) · 2.25 KB
/
Imbalanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from typing import Callable
import pandas as pd
import torch
import torch.utils.data
import torchvision
class ImbalancedDatasetSampler(torch.utils.data.sampler.Sampler):
"""Samples elements randomly from a given list of indices for imbalanced dataset
Arguments:
indices: a list of indices
num_samples: number of samples to draw
callback_get_label: a callback-like function which takes two arguments - dataset and index
"""
def __init__(self, dataset, indices: list = None, num_samples: int = None, callback_get_label: Callable = None):
# if indices is not provided, all elements in the dataset will be considered
self.indices = list(range(len(dataset))) if indices is None else indices
# define custom callback
self.callback_get_label = callback_get_label
# if num_samples is not provided, draw `len(indices)` samples in each iteration
self.num_samples = len(self.indices) if num_samples is None else num_samples
# distribution of classes in the dataset
df = pd.DataFrame()
df["label"] = self._get_labels(dataset)
df.index = self.indices
df = df.sort_index()
label_to_count = df["label"].value_counts()
weights = 1.0 / label_to_count[df["label"]]
self.weights = torch.DoubleTensor(weights.to_list())
def _get_labels(self, dataset):
if self.callback_get_label:
return self.callback_get_label(dataset)
elif isinstance(dataset, torchvision.datasets.MNIST):
return dataset.train_labels.tolist()
elif isinstance(dataset, torchvision.datasets.ImageFolder):
return [x[1] for x in dataset.imgs]
elif isinstance(dataset, torchvision.datasets.DatasetFolder):
return dataset.samples[:][1]
elif isinstance(dataset, torch.utils.data.Subset):
return dataset.dataset.imgs[:][1]
# elif isinstance(dataset, torch.utils.data.Dataset):
# return dataset.get_labels()
else:
return [dataset[i][1].item() for i in range(len(dataset))]
def __iter__(self):
return (self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, replacement=True))
def __len__(self):
return self.num_samples