Skip to content

Latest commit

 

History

History
38 lines (30 loc) · 1.07 KB

94806d1f-1995-4c72-89c9-07681fa9d97d.md

File metadata and controls

38 lines (30 loc) · 1.07 KB

bot-detection

Model that identifies bots from humans among developer identities.

Example:

from sklearn.preprocessing import LabelEncoder
from sourced.ml.models import BotDetection
from xgboost import XGBClassifier

bot_detection = BotDetection.load("94806d1f-1995-4c72-89c9-07681fa9d97d")
xgb_cls = XGBClassifier()
xgb_cls._Booster = bot_detection_model.booster
xgb_cls._le = LabelEncoder().fit([False, True])
print('model configuration: ', xgb_cls)
print('BPE model vocabulary size: ', len(bot_detection.bpe_model.vocab()))

References

ID 94806d1f-1995-4c72-89c9-07681fa9d97d
Uploaded 2019-10-14 14:39:02
Version 1.0.0
File https://storage.googleapis.com/models.cdn.sourced.tech/models%2Fbot-detection%2F94806d1f-1995-4c72-89c9-07681fa9d97d.asdf
Size 100.0 kB
BPE vocabulary size 200
Number of distinct features 252
Number of trained samples 135941
Proportion of humans against bots 3
weighted precision 0.92
weighted recall 0.91
License O