-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBFS_DL.cpp
executable file
·602 lines (469 loc) · 16 KB
/
BFS_DL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
LICENSING: Copyright (c) 2013, Jesmin Jahan Tithi and Dr. Rezaul Chowdhury
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
This is a Breadth First Search (BFS) Program that uses de-centralized queue pools and lock and atomic instruction free mechanism for dynamic load-balancing. It takes a directed graph as input and a number of source vertices, and for each source vertex it executes BFS from that source and produces the distance of each other vertex in the graph reachable from that source vertex.
*/
/*
It is possible to produce scalability plot from this code if you compile the program with -DCILKVIEWPLOT, Change MAX_P to number of maximum threads you want to run on.
*/
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<cilk/reducer_opadd.h>
#include<cilk/cilk.h>
#include<time.h>
#include <sys/types.h>
#include <sys/timeb.h>
#ifdef CILKVIEWPLOT
#include<cilkview.h>
#endif
#ifndef MAX_P
#define MAX_P 12
#endif
#define SORT_EDGES
using namespace std;
#define QSize 1024
//n = # of vertices, m = # of edges, tsize = total size of the queue
int n, m, r, tsize=0;
int *qsize;
int plogp;
unsigned int *seed;
// queue segment sizes that changes dynamically
int *Qseg;
int minqseg;
int mintsize;
int minnseg;
//Array that holds the source vertices
int *source;
//diameter of the graph
int diameter = 0;
//p = Number of threads
int p = MAX_P;
//number of centralized queues
int numCQ=1;
//If we want to get the scalability plot, we need to distribute the edges properly among the threads. These two variables maintain that distribution if CILKVIEWPLOT is on
#ifdef CILKVIEWPLOT
int adjSizePerThread, *nextAdjSize;
#endif
int Qrange;
//utility functions to get the timing
int getMilliCount( )
{
timeb tb;
ftime( &tb );
int nCount = tb.millitm + ( tb.time & 0xfffff ) * 1000;
return nCount;
}
int getMilliSpan( int nTimeStart )
{
int nSpan = getMilliCount( ) - nTimeStart;
if ( nSpan < 0 ) nSpan += 0x100000 * 1000;
return nSpan;
}
//End utility functions to get the timing
//A graph structure that holds the degree of each vertex, adjacency list and offset of stating point of adjacency list of each vertex
struct Graph
{
public:
int **offset;
int *adjMat;
int *count;
};
// A single graph structure that take cares of all edges and vertices
Graph G;
// A randomly accessible queue structure
struct Q
{
public:
int front, rear, size, dummy1; // queue front, queue rear, queue capacity, dummy to pad the size
int *q; // array that holds the queue elements
int dummy2; // added to make it a multiple of ints
};
/*
Qin = array of queues to hold current level vertices
Qout = array to queues to hold next level vertices
QinT = points to the end of the current level centralized queue pool
QinC = points to the beginning of current non-empty centralized queue pool
*/
Q *Qin, *Qout;
Q **QinT, **QinC;
// function to extend the size of an output queue if the capacity is full. This function doubles the size queue.
inline void extendQueue( Q *Qu )
{
Qu->size <<= 1;
Qu->q = ( int * ) realloc( Qu->q, Qu->size * sizeof( int ) );
}
// This function returns the next queue segment from the [Qid] centralized queue pool to explore and updates the queue pointers appropriately.
int *nextSegment( int Qid )
{
int *q = NULL;
Q* qT=( Q * ) ( QinT[Qid]); //pointer to the last queue of this queue pool
Q *qin = ( Q * ) ( QinC[Qid] - 1 ); //pointer to the current non-empty queue pool
//check the first non-empty queue
while ( ++qin <qT )
{
int f = qin->front;
int k = qin->rear - f;
if ( !k ) continue;
//grab next segment of vertices and update the queue pointers accordingly
QinC[Qid] = qin;
q = ( int * ) ( qin->q + f );
//decide how much you will be able to grab
k = min( Qseg[Qid], k );
qin->front = f + k;
qsize[Qid]-= k;
//fix Qseg
if ( qsize[Qid] > mintsize ) Qseg[Qid] = ( qsize[Qid] >> minnseg);
break;
}
return q;
}
/*Function that actually executes BFS. Each thread executes this function simultaneously to explore some segment of vertices. A thread goes to the centralized queue and picks the next available segment, changes the global queue variables, and the explores that segment of vertices.
*/
void Parallel_BFS_Thread( int *d, int l, int id )
{
int u, v;
//keep track of how many vertices you have already visited
#ifdef CILKVIEWPLOT
int k = 0, knext = 0;
#endif
int *qi;
Q *Qo = ( Q * ) ( Qout + id ); //A pointer to its own output queue
int *qo = ( Qo->q + Qo->rear ); //Rear pointer to the output queue
int *qot = ( Qo->q + Qo->size ); // pointer to the maximum capacity location. size must be >= 1, and rear < size
int numTrial=0;
//seed for generating random number to choose random victim
uint lseed = seed[ id ];
int myQ ;
//if you have not tried plogp times to get a non-empty centralized queue
while(numTrial++<plogp){
lseed = ( 214013 * lseed + 2531011 );
myQ = ( ( lseed >> 16 ) & 0x7FFF ) % numCQ;
//while there is still some non-empty segment left in the queue
while ( ( qi = nextSegment( myQ) ) != NULL )
{
//while there are unexplored vertices in the segment, pick the next vertex from queue
while ( (u = *qi) )
{
*qi++ = 0; //clear the queue location which helps in avoiding
//keep track of how many vertices you have already visited
#ifdef CILKVIEWPLOT
k += G.count[ u ];
if ( k >= adjSizePerThread ) break;
#endif
int *adj = G.offset[ u ]; // pointer to the adjacency list of the vertex
while ( v = *adj++ ) //While the vertex has any neighbour unexplored
{
if ( d[ v ] < n ) continue;
d[ v ] = l; //set the distance of the vertex
*qo++ = v; //enqueue it in the queue
#ifdef CILKVIEWPLOT
knext += G.count[ v ];
#endif
//if you have not exceeded the capacity of the queue, just continue, otherwise, extend the queue size
if ( qo < qot ) continue;
int rear = Qo->size;
extendQueue( Qo );
//Fix the read pointer of the output queue
qo = ( Qo->q + rear );
qot = ( Qo->q + Qo->size );
}
}
//if you have not exceeded the capacity of the queue, just continue, otherwise, extend the queue size
#ifdef CILKVIEWPLOT
if ( k >= adjSizePerThread ) break;
#endif
}
}
seed[ id ] = lseed; //update seed to keep it random
#ifdef CILKVIEWPLOT
nextAdjSize[ id ] = knext;
#endif
//end the output queue with a zero
*qo = 0;
//fix the rear of the queue
Qo->rear = ( int ) ( qo - Qo->q );
}
//The main BFS function that initializes the distance array and input output queues and launches all threads to run parallel_BFS_Threads
void parallelBFS( int s, int *d )
{
diameter = 0;
//initialize distance array
cilk_for ( int i = 0; i < n + 1; i++ ) d[ i ] = n;
//initialize front and rear of all queues
cilk_for ( int i = 0; i < p; i++ )
{
Qin[ i ].front = Qin[ i ].rear = 0;
}
//insert the source vertex in the first queue and set its distance to 0
d[ s ] = 0;
Qin[ 0 ].q[ 0 ] = s;
Qin[ 0 ].rear = 1;
Qin[ 0 ].q[ 1 ] = 0;
//total size of the queue is 1 at this point
qsize[0]=tsize= 1;
Q *temp;
#ifdef CILKVIEWPLOT
cilk_for ( int i = 0; i < p; i++ ) nextAdjSize[ i ] = 0;
adjSizePerThread = 1;
#endif
while ( tsize > 0 )
{
diameter++;
QinC[0] = (Qin); //starting point of current centralized queue
QinT[0] = (QinC[0]+Qrange); //ending point of the current centralized queue
int v= qsize[0] >> minnseg ;
Qseg[0] = max( minqseg, (v) );
//initialize all centralized queue pools
for(int i=1;i<numCQ;i++){
// cilk_for(int i=0;i<numCQ;i++){ //seems to be slower!!
QinC[i] = QinT[i-1];
QinT[i] = (QinC[i]+Qrange);
v=qsize[i] >> minnseg;
Qseg[i] = max( minqseg, ( v ) );
}
//spawn all threads to work to explore the vertices
for ( int i = 0; i < p - 1; i++ )
cilk_spawn Parallel_BFS_Thread( d, diameter, i );
Parallel_BFS_Thread( d, diameter, p - 1 );
cilk_sync; //sync all threads after finishing of current BFS level
//swap input and output queues (current and next level queues)
temp = Qin;
Qin = Qout;
Qout = temp;
tsize=0;
//compute the current size of the input queues
for ( int i = 0; i < p; i++ )
{
Qout[ i ].front = Qout[ i ].rear = 0;
int x=Qin[ i ].rear - Qin[ i ].front;
qsize[i/Qrange]+=x ;
if(x>0) tsize=1;
}
//If you want a scalability plot, compute how much each of the thread should explore
#ifdef CILKVIEWPLOT
cilk::reducer_opadd< int > adjSize;
adjSize.set_value( 0 );
cilk_for ( int i = 0; i < p; i++ )
{
adjSize += nextAdjSize[ i ];
nextAdjSize[ i ] = 0;
}
adjSizePerThread = ( int ) ceil( ( 1.0 * adjSize.get_value( ) ) / p );
#endif
}
}
//function to check the sanity of the result
unsigned long long computeChecksum( int *d, int flag, int src )
{
cilk::reducer_opadd< unsigned long long > chksum;
cilk_for ( int i = 1; i < (n+1); i++ ){
if(flag==1) {
if(i!=src)
chksum+=n;
}
else chksum += d[ i ];
}
return chksum.get_value();
}
//function to get the parameter value from command prompt
char *getParamVal( int argc, char **argv, char *param )
{
for ( int i = 1; i < argc - 1; i++ )
if ( !strcasecmp( argv[ i ], param ) ) return argv[ i + 1 ];
return NULL;
}
int main( int argc, char **argv ){
char *pv = getParamVal( argc, argv, ( char * ) "-i" ); //name of the input file
if ( pv != NULL ) freopen( pv, "r" , stdin );
pv = getParamVal( argc, argv, ( char * ) "-o" ); //name for the output file
if ( pv != NULL ) freopen( pv, "w" , stdout );
#ifdef CILKVIEWPLOT
pv = getParamVal( argc, argv, ( char * ) "-p" ); //number of threads
if ( pv != NULL ) p = atoi( pv );
else p = MAX_P;
#else
p = __cilkrts_get_nworkers(); //number of threads = maximum number threads
#endif
pv = getParamVal( argc, argv, ( char * ) "-numCQ" ); //number of centralized queues
if(pv!=NULL) numCQ=atoi(pv);
//compute the value of numCQ log numCQ in plogp
plogp = -1;
int t = numCQ;
while ( t )
{
plogp++;
t >>= 1;
}
plogp *= numCQ;
// I changed plogp value to make it more efficient. It should be changed based on the necessity
if (numCQ==1)
plogp=1;
else
if(plogp< 24) plogp=24;
//initialize the random number generator
srand ( time(NULL) );
//three integers giving the number of vertices (n), number of edges (m), and the number of source vertices (r), respectively
cin>>n; //#vertices
cin>>m; //#edges
cin>>r;
r=100;
//Allocate memory for graph
G.adjMat = new int[ m + n + 1 ]; //adj list
G.count = new int[ n + 1 ]; //Degree
G.offset = new int*[ n + 1 ]; //starting point of vertex i's adjacency list
int *ofs = new int[ n + 1 ];
int **edgeList = new int*[ 2 ]; //edges
for ( int i = 0; i < 2; i++ )
edgeList[ i ] = new int[ m ];
//initialize the degree of the vertices
cilk_for ( int i = 0; i < n + 1; i++ )
G.count[ i ] = 0;
//initialize the graph and construct it
for ( int i = 0; i < m; i++ )
{
cin >> edgeList[ 0 ][ i ];
G.count[ edgeList[ 0 ][ i ] ]++;
cin >> edgeList[ 1 ][ i ];
}
//ofs array works as a prefix sum array and holds the stating of adjacency list for vertex i
ofs[ 1 ] = 0;
G.offset[ 1 ] = ( int * ) ( G.adjMat + ofs[ 1 ] );
for ( int i = 2; i < n + 1; i++ )
{
ofs[ i ] = ofs[ i - 1 ] + G.count[ i - 1 ] + 1;
G.offset[ i ] = ( int * ) ( G.adjMat + ofs[ i ] );
}
for ( int i = 0; i < m; i++ )
{
int j = edgeList[ 0 ][ i ];
int k = ofs[ j ];
G.adjMat[ k ] = edgeList[ 1 ][ i ];
ofs[ j ] = k + 1;
}
//add a 0 at the end of each adjacency list as an end marker
for ( int i = 1; i < n + 1; i++ )
{
int k = ofs[ i ];
G.adjMat[ k ] = 0;
//sort the edges to make the access pattern cache efficient
#ifdef SORT_EDGES
std::sort( G.adjMat + k - G.count[ i ], G.adjMat + k ); // should use a parallel sorting algorithm
#endif
}
//free memory
for (int i = 0; i < 2; i++ )
delete [] edgeList[ i ];
delete [] edgeList;
delete [] ofs;
//take the source vertices as input
source=new int [r];
for (int i=0;i<r;i++){
cin>>source[i];
}
//allocate the distance array
int *dist=new int [n+1];
if(dist==NULL) {cout<<"Allocation failed in line 61 for size"<<n<<endl; exit(1);}
//allocate input and output queues
Qin=new Q[p];
Qout=new Q[p];
//initialize the queue variables
cilk_for ( int i = 0; i < p; i++ )
{
Qin[ i ].size = QSize;
Qin[ i ].front = Qin[ i ].rear = 0;
Qin[ i ].q = ( int * ) malloc( Qin[ i ].size * sizeof( int ) );
Qout[ i ].size = QSize;
Qout[ i ].front = Qout[ i ].rear = 0;
Qout[ i ].q = ( int * ) malloc( Qout[ i ].size * sizeof( int ) );
}
#ifdef CILKVIEWPLOT
nextAdjSize = new int[ p ];
#endif
int zerovtx=0; //number of zero degree vertex
int flag=0;
//Initialize the random seeds for each thread
seed = new unsigned int[p];
for ( int i = 0; i < p; i++ ) seed[ i ] = rand( );
double start=0, end=0;
int minQseg = 64; //minimum queue segment
int minNseg = -1;
t = p * p;
while ( t )
{
minNseg++;
t >>= 1;
}
int minTsize = minQseg * ( 1L << minNseg );
qsize=new int[numCQ];
memset(qsize, 0, sizeof(int)*numCQ);
Qseg=new int[numCQ];
minqseg=minQseg;
minnseg=minNseg;
mintsize=minTsize;
QinT=new Q*[numCQ];
QinC=new Q*[numCQ];
Qrange=p/numCQ; //each centralize queue pool contains p/numCQ queues
#ifdef CILKVIEWPLOT
cilk::cilkview cv;
cv.start( );
#endif
//run BFS for all source vertex one by one
for(int i=0;i<r;i++){
flag=0;
cilk_for(int j = 0; j < numCQ; j++ ) qsize[j]=0;
if(G.count[source[i]]>0){
#ifndef CILKVIEWPLOT
start = getMilliCount();
#endif
parallelBFS(source[i],dist);
#ifndef CILKVIEWPLOT
end=end+getMilliSpan(start);
#endif
}
else
{
zerovtx++;
flag=1;
diameter=1;
}
#ifdef DEBUG
cout<<diameter-1<<" ";
cout<<computeChecksum(dist, flag, source[i] )<<endl;
#endif
}
#ifdef CILKVIEWPLOT
cv.stop( );
cv.dump( argv[ 0 ] );
#endif
cout<<"Threads "<<p;
printf(" Run time: %f seconds\n", (float)end/1000);
cout<<"Num of disconnected sources: "<<zerovtx<<endl;
delete []dist;
#ifdef CILKVIEWPLOT
delete []nextAdjSize;
#endif
delete []source;
delete[]G.count;
delete[]G.adjMat;
delete[]G.offset;
for (int i=0;i<p;i++){
free(Qin[i].q);
free(Qout[i].q);
}
delete []Qin;
delete []Qout;
delete [] qsize;
delete [] seed;
return 0;
}