-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBouwWewers.tex
118 lines (104 loc) · 3.96 KB
/
BouwWewers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
\documentclass[pagesize,paper=letter]{scrartcl}
%\documentclass{article}
\usepackage{amsmath, amsthm, amssymb}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{microtype}
\usepackage[all]{xy}
\usepackage[pagebackref,colorlinks]{hyperref}
\usepackage{mathrsfs}
\newcommand{\sce}{\mathscr{C}^{\textsf{ex}}}
\newcommand{\scd}{\mathscr{C}}
\newcommand{\caff}{C_{\textsf{aff}}}
\newcommand{\sj}{\mathscr{J}}
\theoremstyle{plain}
\newtheorem*{reftheorem}{Theorem}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{problem}{Problem}
\newtheorem{question}{Question}
\newtheorem*{question*}{Question}
\newtheorem{claim}{Claim}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
% General
\renewcommand{\emptyset}{\varnothing}
\newcommand{\hra}{\hookrightarrow}
\newcommand{\righthookarrow}{\hookrightarrow}
\newcommand{\isom}{\cong}
\newcommand{\too}{\longrightarrow}
\newcommand{\isomto}{\overset{\sim}{\longrightarrow}}
\newcommand{\nto}[1]{\overset{#1}{\longrightarrow}}
\newcommand{\nsubset}{\not\subset}
\renewcommand{\phi}{\varphi}
\newcommand{\To}{\Rightarrow}
\newcommand{\ilim}{\displaystyle\lim_{\leftarrow}}
\newcommand{\dirlim}{\displaystyle\lim_{\rightarrow}}
\newcommand{\eps}{\varepsilon}
\renewcommand{\bar}[1]{\overline{#1}}
\renewcommand{\tilde}[1]{\widetilde{#1}}
\DeclareMathOperator{\car}{char}
\DeclareMathOperator{\rk}{rk}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\pgl}{PGL}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\Sl}{SL}
% Number theory
\newcommand{\Qbar}{\ensuremath{\overline{\Q}}}
\newcommand{\Kb}{\overline{K}}
\newcommand{\Fb}{\overline{F}}
\newcommand{\kb}{\overline{k}}
\newcommand{\Xbar}{\overline{X}}
\newcommand{\Cbar}{\overline{C}}
\newcommand{\R}{\ensuremath{\mathbb{R}}}
\newcommand{\C}{\ensuremath{\mathbb{C}}}
\newcommand{\F}{\ensuremath{\mathbb{F}}}
\newcommand{\fp}{\ensuremath{\mathbb{F}_p}}
\newcommand{\sm}{\ensuremath{\mathfrak{m}}}
\newcommand{\Q}{\ensuremath{\mathbb{Q}}}
\newcommand{\Z}{\ensuremath{\mathbb{Z}}}
\newcommand{\ok}{\mathscr{O}_K}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\inv}{inv}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\tr}{Tr}
% Algebraic geometry
\newcommand{\sA}{\ensuremath{\mathscr{A}}}
\newcommand{\sO}{\ensuremath{\mathscr{O}}}
\newcommand{\sL}{\ensuremath{\mathscr{L}}}
\newcommand{\sK}{\ensuremath{\mathscr{K}}}
\newcommand{\sF}{\ensuremath{\mathscr{F}}}
\newcommand{\A}{\ensuremath{\mathbb{A}}}
\newcommand{\Pro}{\ensuremath{\mathbb{P}}}
\newcommand{\G}{\ensuremath{\mathbb{G}}}
\newcommand{\sG}{\mathscr{G}}
\newcommand{\sX}{\mathscr{X}}
\DeclareMathOperator{\Supp}{Supp}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\dv}{div}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\P0}{Pic^0}
\DeclareMathOperator{\Spec}{Spec}
\begin{document}
\title{Using Bouw-Wewers}
\author{Shahed Sharif}
\maketitle
The purpose of these notes is to compute the $L$-function and conductor of the superelliptic nonsingular curve with affine piece
\[
C: xy^r = (x+1)(x+t)
\]
over $t = 1$ and $t = \infty$.
\section{When $t = \infty$}
\label{sec:when-t-=}
Let $K = \F(t)$, where $\F$ is our finite field of characteristic relatively prime to $r$. Let $L$ be the splitting field of $X^r - t$ over $K$. Write $\tau$ for a fixed $r$th root of $t$. Let $E$ be the maximal subextension of $L/K$ which is unramified at $1/t$; observe that $E = K(\mu_r)$, where $\mu_r$ is the set of $r$th roots of unity. We first compute a semistable model for $C_L$ over $\tau = \infty$; this calculation is precisely that stated by Hall in the proof Lemma 6 of his $\ell$-torsion notes, with some notational changes.
\end{document}