-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.html
1242 lines (1090 loc) · 58.2 KB
/
slides.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="slides_files/libs/clipboard/clipboard.min.js"></script>
<script src="slides_files/libs/quarto-html/tabby.min.js"></script>
<script src="slides_files/libs/quarto-html/popper.min.js"></script>
<script src="slides_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="slides_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="slides_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="slides_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="slides_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.4.555">
<meta name="author" content="Daniel Witte, Jie Zhang">
<title>Mediation Analyses</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="slides_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="slides_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
</style>
<link rel="stylesheet" href="slides_files/libs/revealjs/dist/theme/quarto.css">
<link href="slides_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="slides_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="slides_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="slides_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
padding-bottom: 0.5rem;
margin-bottom: 0;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Mediation Analyses</h1>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
Daniel Witte, Jie Zhang
</div>
</div>
</div>
</section>
<section id="welcome-to-the-workshop-on-mediation-analysis" class="slide level2">
<h2>Welcome to the workshop on Mediation Analysis🎉</h2>
</section>
<section id="outlines" class="slide level2">
<h2>Outlines 📌</h2>
<p>In this course, you will:</p>
<ul>
<li><p>Understand the fundementals of mediation analysis</p>
<p><em>Apply What is mediation analysis? When and why should you use this?</em></p></li>
<li><p>Master the theoretical framework</p>
<p><em>Understand traditional mediation concepts; Learn principles of causal mediation analysis</em></p></li>
<li><p>Conduct practical analyses using R software</p>
<p><em>Apply appropriate statistical methods to perform mediation analysis</em></p></li>
<li><p>Interpret and communicate results</p>
<p><em>Analyze outputs from mediation analyses and draw meaningful conclusions from results</em></p></li>
</ul>
</section>
<section id="what-is-mediation" class="slide level2">
<h2>What is mediation?</h2>
<p>Mediation analysis is the study of pathways and mechanisms through which an <em>exposure</em> or <em>intervention</em> impacts an outcome.</p>
<p>In clinical and epidemiological research, the primary focus is often on determining whether a specific intervention has an effect on a disease or health outcome. Once this effect is established, the next natural question is to explore the “black box”—the underlying mechanisms that explain how the intervention (or exposure) leads to the observed outcome. As we are not only interested in whether an intervention works, but <em>how</em> it works.</p>
</section>
<section id="mediation-analyses" class="slide level2">
<h2>Mediation analyses</h2>
<p>The techniques to assess the relative magnitude of the direct and indirect effects is referred to as ‘mediation analysis’.</p>
</section>
<section id="mediation-analyses-1" class="slide level2">
<h2>Mediation analyses</h2>
<p>The purpose of mediation analysis is to determine if the effect of a treatment (A) on an outcome (Y) can be explained by a third mediating variable (M). Thus, mediation analysis not only answers whether two variables are related, but also <strong>why and how</strong>.</p>
</section>
<section id="motivation-for-mediation-analysis" class="slide level2">
<h2>Motivation for mediation analysis</h2>
<ol type="1">
<li><p><strong>Explanation and Understanding</strong></p></li>
<li><p><strong>Confirmation and Refutation of Theory</strong></p></li>
<li><p><strong>Refining Interventions</strong></p></li>
</ol>
</section>
<section id="mediation-analysis" class="slide level2">
<h2>Mediation analysis</h2>
<p>Mediation analysis is becoming more popular. <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC8496983/#F1">Fig. 1</a> shows that both the number of entries in Google Scholar and the number of peer-reviewed articles in PsycINFO that have “mediation analysis” in the title or text have been growing exponentially. </p>
<img data-src="images/trend_mediation.jpg" class="quarto-figure quarto-figure-center r-stretch" width="525"><p class="caption">
Figure 1: Trend Mediation Analysis
</p></section>
<section id="mediation" class="slide level2">
<h2>Mediation</h2>
<p>Overall relationship between A and Y:</p>
<div class="cell">
<div class="cell-output-display">
<div>
<figure>
<p><img data-src="images/a-y.png" style="width:80.0%;height:50.0%"></p>
</figure>
</div>
</div>
</div>
<p>Relationship between A and Y through M:</p>
<div class="cell">
<div class="cell-output-display">
<div>
<figure>
<p><img data-src="images/a-m-y.png" style="width:80.0%;height:50.0%"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="mediation-1" class="slide level2">
<h2>Mediation</h2>
<p>How much does BMI explain the relation between physical activity and the risk of diabetes?</p>
<div class="cell">
<div class="cell-output-display">
<div>
<figure>
<p><img data-src="images/example1.jpg" width="606"></p>
</figure>
</div>
</div>
</div>
<p>How much does inflammation explain the relation between physical activity and the risk of diabetes?</p>
<div class="cell">
<div class="cell-output-display">
<div>
<figure>
<p><img data-src="images/example2.png" width="611"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="traditional-approaches-for-mediation-analysis" class="slide level2">
<h2>Traditional approaches for mediation analysis</h2>
<p>The two traditional approaches to mediation analysis are <strong>the difference method</strong> and <strong>the product method</strong> (also known as the Baron & Kenny-method).</p>
</section>
<section id="method-1-baron-kenny-the-product-method" class="slide level2">
<h2>Method 1: Baron & Kenny (the product method)</h2>
<p>The following criteria need to be satisfied for a variable to be considered a mediator:</p>
<ol type="1">
<li>The exposure should be associated with the mediator.</li>
<li>The mediator should be associated with the outcome.</li>
<li>The exposure should be associated with the outcome.</li>
<li>When controlling for the mediator, the association between the exposure and outcome should be reduced (up to debate).</li>
</ol>
</section>
<section id="baronkenny" class="slide level2">
<h2>Baron&Kenny</h2>
<h3 id="the-four-steps">The four steps:</h3>
<p><strong>STEP 1:</strong> test association between exposure and outcome (a)</p>
<p><strong>STEP 2:</strong> test association between exposure and mediator (b)</p>
<p><strong>STEP 3:</strong> test association between mediator and outcome, controlling for exposure (c)</p>
<p><strong>STEP 4:</strong> mediation is shown if association between X and Y is reduced to non-significance when M is controlled (d)</p>
</section>
<section id="method-2-difference-approach" class="slide level2">
<h2>Method 2: Difference approach</h2>
<p>Total effect: regress Y on X</p>
<p>Direct effect: regress Y on X and M</p>
<p>If a mediation effect exists, the effect of A on Y will be attenuated when M is included in the regression, indicating the effect of A on Y goes through M. If the effect of A on Y completely disappears, M fully mediates between A and Y (full mediation). If the effect of A on Y still exists, but in a smaller magnitude, M partially mediates between A and Y (partial mediation).</p>
</section>
<section id="build-models" class="slide level2">
<h2>Build models</h2>
<p>Mediator-model:</p>
<p><span class="math inline">\(E(M|A=a, C=c) = \beta_0 + \beta_1a + \beta_2c\)</span> (1.1)</p>
<p>Outcome model with adjustment for mediator:</p>
<p><span class="math inline">\(E(Y|A=a, M=m, C=c) = \theta_0 + \theta_1a + \theta_2m + \theta4c\)</span> (1.2)</p>
<p>Outcome model without adjustment for mediator:</p>
<p><span class="math inline">\(E(Y|A=a, C=c) = \theta_0' + \theta_1'a + \theta4'c\)</span> (1.3)</p>
</section>
<section id="summary" class="slide level2">
<h2>Summary</h2>
<ul>
<li><p><strong>Total effect</strong> = <span class="math inline">\(\theta_1'\)</span>, the total effect of the independent variable on the dependent variable.</p></li>
<li><p><strong>Direct effect</strong> = <span class="math inline">\(\theta_1\)</span>, the effect of the independent variable on the dependent variable that is not mediated by the mediator.</p></li>
<li><p><strong>Mediation effect</strong> = <span class="math inline">\(\beta_1 \cdot \theta_2\)</span> (product method).</p></li>
<li><p><strong>Mediation effect</strong> = <span class="math inline">\(\theta_1' - \theta_1\)</span> (difference method).</p>
<p><em>The terms mediation effect and indirect effect are used synonymously</em>.</p></li>
</ul>
</section>
<section id="product-method-vs-difference-method" class="slide level2">
<h2>Product method VS Difference method</h2>
<p>The algebraic equivalence of the indirect effect using the product method and the difference method will coincide for a continuous outcome on the difference scale. However, the two methods diverge when using a binary outcome and logistic regression.</p>
</section>
<section id="limitations-of-the-traditional-approach" class="slide level2">
<h2>Limitations of the traditional approach</h2>
<ul>
<li>Non-linearity</li>
<li>Interactions</li>
<li>Multiple mediators</li>
</ul>
</section>
<section id="further-limitations-of-the-traditional-approach" class="slide level2">
<h2>Further limitations of the traditional approach</h2>
<p>⚠️ Unmeasured confounding of the Mediator-Outcome path</p>
<p>This assumption can be violated in both observational studies as well as RCTs because while the exposure can sometimes be randomized, it is often not the case that both exposure and mediator are randomized.</p>
</section>
<section id="problem-1-intermediate-confounding" class="slide level2">
<h2>Problem 1-Intermediate confounding</h2>
<img data-src="images/intermediate_eg.jpg" width="1333" class="r-stretch"></section>
<section id="problem-1-intermediate-confounding-1" class="slide level2">
<h2>Problem 1-Intermediate confounding</h2>
<ul>
<li><p>In an <strong>RCT study</strong>, pregnant women are randomized to receive a <strong>lifestyle intervention (A)</strong> aimed at weight loss. While <strong>A (lifestyle intervention)</strong> can be randomized, <strong>M (birth weight)</strong> cannot, as it is a pre-existing condition that results from the pregnancy.</p></li>
<li><p>Gestational diabetes is a descent of A (lifestyle intervention on pregnant women), and a cause of Y (child adiposity), you cannot condition on it because it is a mediator of A-Y(lifestyle intervention-child adiposity);</p></li>
<li><p>Gestational diabetes is also a confounder of M-Y relationship (birth weight-child adiposity), it biases the M-Y path if you do not condition on it.</p></li>
</ul>
</section>
<section id="problem-2-collider-bias" class="slide level2">
<h2>Problem 2-Collider bias</h2>
<img data-src="images/intermediate_eg2.jpg" width="634" class="r-stretch"></section>
<section id="problem-2-collider-bias-1" class="slide level2">
<h2>Problem 2-Collider bias</h2>
<p>In observational studies, the situation might get even more complex.</p>
<ul>
<li><p>C1, C2 represent a series of confounders on the pathways.</p></li>
<li><p>Notably, in the presence of <strong>C2</strong>, <strong>gestational diabetes (L)</strong> acts as a <strong>collider</strong> on the pathway <strong>A → L ← C2 → Y</strong> (maternal pre-pregnancy BMI → gestational diabetes <strong>←</strong> C2 → child adiposity). If we adjust for <strong>gestational diabetes (L)</strong>, it will <strong>open a backdoor path</strong>, introducing bias in the estimation of both <strong>direct and indirect effects</strong>. This could distort the causal interpretation of mediation.</p></li>
</ul>
</section>
<section id="when-can-we-use-the-traditional-approach" class="slide level2">
<h2>When can we use the traditional approach</h2>
<p>When fulfill the criteria, simple tools like regression can be used to estimate a causal mediation effect:</p>
<ul>
<li>no unmeasured confounding</li>
<li>no exposure-mediator interaction</li>
<li>linear relationship</li>
<li>rare binary outcome</li>
</ul>
</section>
<section>
<section id="introduction-to-causal-mediation-analysis" class="title-slide slide level1 center">
<h1>Introduction to causal mediation analysis</h1>
</section>
<section id="concept-of-cause" class="slide level2">
<h2>Concept of Cause</h2>
<h3 id="what-is-a-cause">What is a cause?</h3>
<p>If I do A, then Y will happen. If I press the switch, the light will come on.</p>
</section>
<section id="individual-causal-effect" class="slide level2">
<h2>Individual causal effect</h2>
<p>When investigating health outcomes, we would ideally want to know if <strong>you</strong> do X, then Y will happen. We could have a specific question:</p>
<blockquote>
<p>Will eating more red meat give me higher blood glucose in 1 year?</p>
</blockquote>
</section>
<section id="individual-causal-effect-1" class="slide level2">
<h2>Individual causal effect</h2>
<blockquote>
<p>Will eating more red meat give me higher blood glucose in 1 year?</p>
</blockquote>
<p>To answer this question we would ideally have you consume more red meat over 1 year and measure your blood glucose levels. Then, we would turn back time, and make you eat something else over 1 year and then measure your blood glucose levels again. If there is a <strong>difference</strong> between your two outcomes, then we say there is a causal effect.</p>
<p>But we can never do this in the real world. Only ever observe one of Y(0) or Y(1) the other is counterfactual.</p>
</section>
<section id="average-causal-effect" class="slide level2">
<h2>Average causal effect</h2>
<p>Instead, we can perform a randomized controlled trial. We now ask a slightly different question:</p>
<blockquote>
<p>Will eating more red meat give adults higher blood glucose in 1 year?</p>
</blockquote>
<p>We can randomely assigning one group to consume more red meat and the other group to consume more of something else over 1 year. Then we compare the average blood glucose levels after 1 year in each of the groups. If there is a difference, we could say there is an average causal effect.</p>
</section>
<section id="association-vs-causation" class="slide level2">
<h2><strong>Association vs causation</strong></h2>
<p>What makes it complicated to estimate a causal effect is that we cannot observe the outcome under different treatments.</p>
<p>When we only have a subset of the outcomes, we have an association. This is illustrated in <a href="#/fig-causation-association" class="quarto-xref">Figure 2</a>.</p>
<p></p>
<img data-src="images/causation-association.png" width="562" class="r-stretch quarto-figure-center"><p class="caption">
Figure 2: Relationship between causation and association
</p></section>
<section id="key-assumptions" class="slide level2">
<h2><a href="images/filename.png">Key As</a>sumptions</h2>
<p>If we want to infer a causal effect (i.e., what would have happened, had everyone done A=1 vs A=0), we need three assumptions to be fulfilled:</p>
<ul>
<li><p>Exchangeability</p></li>
<li><p>Consistency</p></li>
<li><p>Positivity</p></li>
</ul>
</section>
<section id="notation" class="slide level2">
<h2>Notation</h2>
<p>A = received treatment/intervention/exposure (e.g., 1 = intervention, 0 = no intervention)</p>
<p>Y = observed outcome (e.g., 1 = developed the outcome, 0 = no outcome)</p>
<p><span class="math inline">\(Y^{a=1}\)</span> = Counterfactual outcome under treatment a =1(i.e., the outcome had everyone, counter to the fact, received treatment a = 1)</p>
<p><span class="math inline">\(Y^{a=0}\)</span> = Counterfactual outcome under treatment a=0 (i.e., the outcome had everyone, counter to the fact, received treatment a = 0)</p>
</section>
<section id="modify-the-terms-a-little-for-average-causal-effect" class="slide level2">
<h2>Modify the terms a little for average causal effect:</h2>
<p><span class="math inline">\(E[Y^{a=1}]\)</span> the average counterfactual outcome, had all subjects in the population received treatment a = 1.</p>
<p><span class="math inline">\(Pr[Y^{a=1}]\)</span> the proportion of subjects that would have developed the outcome Y had all subjects in the population of interest received treatment a = 1.</p>
<p><span class="math inline">\(E[Y^{a=0}]\)</span> the average counterfactual outcome, had no subjects in the population received treatment a = 0.</p>
<p><span class="math inline">\(Pr[Y^{a=0}]\)</span> the proportion of subjects that would have developed the outcome Y had no subjects in the population of interest received treatment a = 0.</p>
</section>
<section id="definition-of-a-causal-effect" class="slide level2">
<h2>Definition of a causal effect</h2>
<p>More formally we can now define a causal effect:</p>
<p><span class="math inline">\(E[Y^{a=1} = 1] - E[Y^{a=0} = 1] \ne 0\)</span></p>
</section>
<section id="causal-mediation-analysis" class="slide level2">
<h2>Causal mediation analysis</h2>
<p>Causal mediation analyses help you establish whether treatment <em>causes</em> the outcome because it <em>causes</em> the mediator.</p>
<p>To do this, causal mediation seek to understand how the paths behave under circumstances different from the observed circumstances (e.g., interventions).</p>
</section>
<section id="why-use-causal-mediation-analysis" class="slide level2">
<h2>Why use causal mediation analysis?</h2>
<p>Causal mediation analysis is an extension of the traditional approach by:</p>
<ul>
<li>outlining all confounding assumptions needed</li>
<li>handling non-linearity and interaction</li>
<li>clearly defining estimands of interest</li>
</ul>
</section>
<section id="causal-approach-brings-alternative-parameters" class="slide level2">
<h2>Causal approach brings alternative parameters</h2>
<ul>
<li>Stand Mediation Analysis
<ul>
<li><p>Total Effect</p></li>
<li><p>Direct Effect</p></li>
<li><p>Indirect Effect</p></li>
</ul></li>
<li>Counterfactual-based Causal Mediation Analysis
<ul>
<li><p>Controlled Direct Effect (CDE(m))</p></li>
<li><p>Natural Direct Effect (NDE)</p></li>
<li><p>Natural Indirect Effect (NIE)</p></li>
</ul></li>
</ul>
</section>
<section id="key-strengths" class="slide level2">
<h2>Key Strengths</h2>
<ul>
<li><p>can provide causal estimates even when mediator or outcome are binary</p></li>
<li><p>can deal with interaction between exposure and mediator</p></li>
<li><p>can deal with intermediate confounding</p></li>
</ul>
</section>
<section id="non-linearity-and-interactions" class="slide level2">
<h2>Non-linearity and interactions</h2>
<p>Neither the product method nor the difference method can take interaction and non-linearity into account.</p>
<p>Causal mediation analysis can take this into account. It can do this using a regression-based approach. It can also use other causal inference analysis methods such as g-computation, that are different from the traditional regression approach in that:</p>
<ul>
<li>it builds a causal model. This model can include non-linearity and interactions</li>
<li>then artificially manipulate the data to set the treatment <strong>and</strong> the mediator to certain values</li>
<li>then predict the outcome using the causal model and contrast the outcomes</li>
</ul>
</section>
<section id="defining-estimands" class="slide level2">
<h2>Defining estimands</h2>
<p>Imagine we have a hypothetical randomized controlled trial where we give participants treatment or no treatment on a specific outcome Y.</p>
<p><span class="math inline">\(Y^{a=1} - Y^{a=0}\)</span></p>
<p>For mediation, we are also interested in the effect of a mediator on this pathway. Now image that we also intervene on the mediator in a new hypothetical randomized controlled trial.</p>
<p><span class="math inline">\(Y^{m=1} - Y^{m=0}\)</span></p>
<p>Now consider if we, in the same trial, could intervene on both because we are interested in whether treatment <em>causes</em> the outcome because it <em>causes</em> the mediator.</p>
</section>
<section id="notation-1" class="slide level2">
<h2>Notation</h2>
<p><span class="math inline">\(Y^a\)</span> = a subject’s outcome if treatment A were set, possible contrary to fact, to a</p>
<p><span class="math inline">\(M^a\)</span> = a subject’s value of the mediator if the exposure A were set to the value of a</p>
<p><span class="math inline">\(Y^{a,m}\)</span> = a subject’s outcome if A were set to a and M were set to m</p>
<p><span class="math inline">\(Y^{a,M_a}\)</span> = a subject’s outcome if A were set to a and M were set the value m would have had had a been set to a. Note, this is a nested counterfactual</p>
</section>
<section id="effect-decomposition" class="slide level2">
<h2>Effect Decomposition</h2>
<p>We can now define these estimands:</p>
<ul>
<li>the controlled direct effect (CDE)</li>
<li>natural direct effect (NDE)</li>
<li>natural indirect effect (NIE)</li>
</ul>
</section></section>
<section>
<section id="estimation-of-effects-using-causal-mediation-analysis" class="title-slide slide level1 center">
<h1>Estimation of effects using causal mediation analysis</h1>
</section>
<section id="natural-direct-effect" class="slide level2">
<h2>Natural direct effect</h2>
<p>The NDE is how much the outcome would change if the treatment a, was set at its natural value versus 0 but for each individual the mediator was kept at the level it would have taken, for that individual, in the absence of the exposure.</p>
</section>
<section id="controlled-direct-effect" class="slide level2">
<h2>Controlled direct effect</h2>
<p>For the controlled direct effect we set m to a specific value. The CDE answer the question, what would be the effect of A on Y, when fixing M at a specific value for everyone in the population.</p>
</section>
<section id="natural-indirect-effect" class="slide level2">
<h2>Natural indirect effect</h2>
<p>The NIE is how much the outcome would change on average if the treatment was fixed at level a but the mediator was changed from the level it would take if a* = 0 to the level it would take if a =1 .</p>
<p>Note that exposure has to have an effect on M otherwise this will be zero.</p>
<p>The NIE asks the question: the effect of exposure that ‘would be prevented if the exposure did not cause the mediator’ (i.e., the portion of the effect for which mediation is ‘necessary’)</p>
<p>This is often the effect we are interested in in biomedical research for questions regarding mediation.</p>
</section>
<section id="proportion-mediation" class="slide level2">
<h2>Proportion mediation</h2>
<p>From this, we can calculate the proportion mediated.</p>
<p><span class="math inline">\(PM = \frac{TNIE}{TE}\)</span></p>
</section>
<section id="total-effect" class="slide level2">
<h2>Total effect</h2>
<p>The total effect can be decomposed as:</p>
<p><span class="math inline">\(TE = PNDE + TNIE\)</span></p>
<p>This is the overall effect of x on y.</p>
<h3 id="section"></h3>
</section>
<section id="further-decomposition" class="slide level2">
<h2>Further decomposition</h2>
<img data-src="images/a-i-y.jpg" width="606" class="r-stretch"></section>
<section id="effect-decomposition-robins-and-greenland" class="slide level2">
<h2>Effect Decomposition (Robins and Greenland)</h2>
<p>When there are interaction and non-linearity, different ways of accounting for the interaction:</p>
<ul>
<li>Pure natural direct effect (PNDE)-indirect effect due to mediator alone</li>
<li>Total natural indirect effect (TNIE)-indirect effect due to mediator and its interaction with the exposure</li>
<li>Pure natural indirect effect (PNIE)</li>
<li>Total nature direct effect (TNDE)</li>
</ul>
<p>TE = PNDE + TNIE = TNDE + PNIE</p>
<h3 id="controlled-direct-effect-1">Controlled direct effect</h3>
<p>The effect of A on Y not mediated through M. Fixing the value of M to m.</p>
<p><span class="math inline">\(Y^{a=1,m}\)</span> - <span class="math inline">\(Y^{a=0,m}\)</span></p>
<p>We intervene on <span class="math inline">\(a\)</span> but fix <span class="math inline">\(m\)</span> to a certain value. The CDE is how much the outcome would change on average if the mediator were fixed at level m uniformly in the population but the treatment were changed from 0 to 1.</p>
<p>This could be relevant in the context of a change in a policy that impacted the mediator for everyone. For instance, if air pollution was a mediator between physical activity and cardiovascular disease risk. If a new policy would change the level of air pollution for all while we implement an intervention to increase biking in the city.</p>
<p>This effect is not used that often. But can be highly relevant in some situations.</p>
</section>
<section id="pure-natural-direct-effect" class="slide level2">
<h2>(Pure) Natural direct effect</h2>
<p>The effect that would remain, if we were to disable the pathway from exposure to mediator.</p>
<p><span class="math inline">\(Y^{a=1,M_a=0}\)</span> - <span class="math inline">\(Y^{a=0,M_a=0}\)</span></p>
<p>The PNDE is how much the outcome would change if the exposure was set at a = 1 versus a* = 0 but for each individual the mediator was kept at the level it would have taken, for that individual, in the absence of the exposure.</p>
<p>Note that the word “natural” refers to the nested counterfactual, the level the mediator would have taken in the absence of exposure. What it would naturally have been in the absence of exposure.</p>
</section>
<section id="total-natural-direct-effect" class="slide level2">
<h2>Total natural direct effect</h2>
<p><span class="math inline">\(Y^{a=1,M_a=1}\)</span> - <span class="math inline">\(Y^{a=0,M_a=1}\)</span></p>
<p>Note, different from above in that the mediator is kept at the level it would have taken in the <strong>presence</strong> of the exposure.</p>
</section>
<section id="total-natural-indirect-effect" class="slide level2">
<h2>(Total) Natural indirect effect</h2>
<p>The effect of the mediator pathway.</p>
<p><span class="math inline">\(Y^{a=1,M_a=1}\)</span> - <span class="math inline">\(Y^{a=1,M_a=0}\)</span></p>
<p>The NIE is how much the outcome would change on average if the exposure were fixed at level a = 1 but the mediator were changed from the level it would take if a* = 0 to the level it would take if a = 1.</p>
<p>Note that exposure has to have an effect on M otherwise this will be zero.</p>
</section>
<section id="pure-natural-indirect-effect" class="slide level2">
<h2>Pure natural indirect effect</h2>
<p><span class="math inline">\(Y^{a=0,M_a=1}\)</span> - <span class="math inline">\(Y^{a=0,M_a=0}\)</span></p>
<p>Note, this is different from the TNIE in that the exposure is set to no intervention.</p>
</section>
<section id="interaction-effects" class="slide level2">
<h2>Interaction effects</h2>
<p><span class="math inline">\(INT_{ref} = PNDE - CDE\)</span></p>
<p>Mediation interaction:</p>
<p><span class="math inline">\(INT_{med} = TNIE - PNIE\)</span></p>
<h3 id="proportions">Proportions</h3>
<p>Proportion CDE:</p>
<p><span class="math inline">\(prop^{CDE} = CDE / TE\)</span></p>
<p>Proportion <span class="math inline">\(INT_{ref}\)</span></p>
<p><span class="math inline">\(prop^{INT_{ref}} = INT_{ref} / TE\)</span></p>
<p>Proportion <span class="math inline">\(INT_{med}\)</span></p>
<p><span class="math inline">\(prop^{INT_{med}} = INT_{med} / TE\)</span></p>
<p>Proportion pure natural indirect effect:</p>
<p><span class="math inline">\(prop^{PNIE} = PNIE / TE\)</span></p>
<p>Proportion mediated:</p>
<p><span class="math inline">\(PM = TNIE / TE\)</span></p>
<p>Proportion attributable to interaction:</p>
<p><span class="math inline">\(INT = (INT_{ref} + INT_{med}) / TE\)</span></p>
<p>Proportion eliminated:</p>
<p><span class="math inline">\(PE = (INT_{ref} + INT_{med} + PNIE) / TE\)</span></p>
</section>
<section id="code-along-practice" class="slide level2">
<h2>Code-along practice</h2>
<div class="quarto-auto-generated-content">
<div class="footer footer-default">
</div>
</div>
</section></section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="slides_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="slides_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="slides_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="slides_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="slides_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="slides_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="slides_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="slides_files/libs/revealjs/plugin/search/search.js"></script>
<script src="slides_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="slides_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'smaller': false,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: 'c/t',
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'none',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',
// Transition style for full page slide backgrounds
// (none/fade/slide/convex/concave/zoom)
backgroundTransition: 'none',
// Number of slides away from the current that are visible
viewDistance: 3,
// Number of slides away from the current that are visible on mobile
// devices. It is advisable to set this to a lower number than
// viewDistance in order to save resources.
mobileViewDistance: 2,
// The "normal" size of the presentation, aspect ratio will be preserved
// when the presentation is scaled to fit different resolutions. Can be
// specified using percentage units.
width: 1050,
height: 700,
// Factor of the display size that should remain empty around the content
margin: 0.1,
math: {
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
config: 'TeX-AMS_HTML-full',
tex2jax: {
inlineMath: [['\\(','\\)']],
displayMath: [['\\[','\\]']],
balanceBraces: true,
processEscapes: false,
processRefs: true,
processEnvironments: true,
preview: 'TeX',
skipTags: ['script','noscript','style','textarea','pre','code'],
ignoreClass: 'tex2jax_ignore',
processClass: 'tex2jax_process'
},
},
// reveal.js plugins
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,
RevealMath,
RevealNotes,
RevealSearch,
RevealZoom
]
});
</script>
<script>
// htmlwidgets need to know to resize themselves when slides are shown/hidden.
// Fire the "slideenter" event (handled by htmlwidgets.js) when the current
// slide changes (different for each slide format).
(function () {
// dispatch for htmlwidgets