Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
lnhutnam committed Mar 4, 2024
1 parent 3333134 commit 7a57a16
Showing 1 changed file with 17 additions and 17 deletions.
34 changes: 17 additions & 17 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -127,11 +127,11 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

[1] (THOR) Lee, Y. C., Lee, J., Lee, D., & Kim, S. W. (2024). [Learning to compensate for lack of information: Extracting latent knowledge for effective temporal knowledge graph completion](https://www.sciencedirect.com/science/article/abs/pii/S0020025523014421?casa_token=clrOVF8uX6sAAAAA:CbR7aGo0qkRov9ss746qvbbzKHTyqhD9jLULqbGBFigjj8pOiRq7Vd2e9_xbnLO_sZlDjU-DmLo). Information Sciences, 654, 119857.

> Extended version from: Y. -C. Lee, J. Lee, D. Lee and S. -W. Kim, ["THOR: Self-Supervised Temporal Knowledge Graph Embedding via Three-Tower Graph Convolutional Networks,"](https://ieeexplore.ieee.org/document/10027723) 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 2022, pp. 1035-1040, doi: 10.1109/ICDM54844.2022.00127.
> Extended version from: Y. -C. Lee, J. Lee, D. Lee and S. -W. Kim, ["THOR: Self-Supervised Temporal Knowledge Graph Embedding via Three-Tower Graph Convolutional Networks,"](https://ieeexplore.ieee.org/document/10027723) 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 2022, pp. 1035-1040, doi: 10.1109/ICDM54844.2022.00127. [Github](https://github.com/EJHyun/THOR)
[2] (Joint-MTComplEx) Zhang, F., Chen, H., Shi, Y., Cheng, J., & Lin, J. (2024). [Joint framework for tensor decomposition-based temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S002002552301438X). Information Sciences, 654, 119853.

[3] (DGTL) Liu, Z., Li, Z., Li, W., & Duan, L. (2024). [Deep Graph Tensor Learning for Temporal Link Prediction](https://www.sciencedirect.com/science/article/abs/pii/S0020025523016717). Information Sciences, 120085.
[3] (DGTL) Liu, Z., Li, Z., Li, W., & Duan, L. (2024). [Deep Graph Tensor Learning for Temporal Link Prediction](https://www.sciencedirect.com/science/article/abs/pii/S0020025523016717). Information Sciences, 120085. [Github](https://github.com/xiaolaosao/DGTL)

[4] (CRmod) Zhu, L., Chai, D., & Bai, L. (2024). [CRmod: Context-Aware Rule-Guided reasoning over temporal knowledge graph](https://www.sciencedirect.com/science/article/pii/S0020025524002561). Information Sciences, 120343. [Github](https://github.com/DMKE-Lab/CRmod)

Expand All @@ -145,9 +145,9 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

**Expert Systems with Applications**

[1] (CDRGN-SDE) Zhang, D., Feng, W., Wu, Z., Li, G., & Ning, B. (2024). [CDRGN-SDE: Cross-Dimensional Recurrent Graph Network with neural Stochastic Differential Equation for temporal knowledge graph embedding](https://www.sciencedirect.com/science/article/pii/S095741742400160X). Expert Systems with Applications, 123295.
[1] (CDRGN-SDE) Zhang, D., Feng, W., Wu, Z., Li, G., & Ning, B. (2024). [CDRGN-SDE: Cross-Dimensional Recurrent Graph Network with neural Stochastic Differential Equation for temporal knowledge graph embedding](https://www.sciencedirect.com/science/article/pii/S095741742400160X). Expert Systems with Applications, 123295. [Github](https://github.com/zhangdddong/CDRGN-SDE)

[2] (TPComplEx) Yang, J., Ying, X., Shi, Y., & Xing, B. (2024). [Tensor decompositions for temporal knowledge graph completion with time perspective](https://www.sciencedirect.com/science/article/pii/S0957417423017694). Expert Systems with Applications, 237, 121267.
[2] (TPComplEx) Yang, J., Ying, X., Shi, Y., & Xing, B. (2024). [Tensor decompositions for temporal knowledge graph completion with time perspective](https://www.sciencedirect.com/science/article/pii/S0957417423017694). Expert Systems with Applications, 237, 121267. [Github](https://github.com/Jinfa/TPComplEx)

**Frontiers of Computer Science**

Expand Down Expand Up @@ -200,7 +200,7 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

**IEEE/ACM Transactions on Audio, Speech, and Language Processing**

[1] Xie, Z., Zhu, R., Liu, J., Zhou, G., & Huang, J. X. (2023). [TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding](https://ieeexplore.ieee.org/abstract/document/10141863/). IEEE/ACM Transactions on Audio, Speech, and Language Processing.
[1] (TARGAT) Xie, Z., Zhu, R., Liu, J., Zhou, G., & Huang, J. X. (2023). [TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding](https://ieeexplore.ieee.org/abstract/document/10141863/). IEEE/ACM Transactions on Audio, Speech, and Language Processing.

**Applied Intelligence**

Expand All @@ -212,7 +212,7 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

[4] (TIAR) Mu, C., Zhang, L., Ma, Y., & Tian, L. (2023). [Temporal knowledge subgraph inference based on time-aware relation representation](https://link.springer.com/article/10.1007/s10489-023-04833-9). Applied Intelligence, 53(20), 24237-24252.

[5] He, P., Zhou, G., Zhang, M., Wei, J., & Chen, J. (2023). [Improving temporal knowledge graph embedding using tensor factorization](https://link.springer.com/article/10.1007/s10489-021-03149-w). Applied Intelligence, 53(8), 8746-8760.
[5] (TNTSimplE) He, P., Zhou, G., Zhang, M., Wei, J., & Chen, J. (2023). [Improving temporal knowledge graph embedding using tensor factorization](https://link.springer.com/article/10.1007/s10489-021-03149-w). Applied Intelligence, 53(8), 8746-8760.

**Neural Networks**

Expand All @@ -228,7 +228,7 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

**IEEE Transactions on Neural Networks and Learning Systems**

[1] Wang, J., Wang, B., Gao, J., Li, X., Hu, Y., & Yin, B. (2023). [QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10132432/). IEEE Transactions on Neural Networks and Learning Systems. [Github](https://github.com/jiapuwang/QDN-A-Quadruplet-Distributor-Network-for-Temporal-Knowledge-Graph-Completion)
[1] (QDN) Wang, J., Wang, B., Gao, J., Li, X., Hu, Y., & Yin, B. (2023). [QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion](https://ieeexplore.ieee.org/abstract/document/10132432/). IEEE Transactions on Neural Networks and Learning Systems. [Github](https://github.com/jiapuwang/QDN-A-Quadruplet-Distributor-Network-for-Temporal-Knowledge-Graph-Completion)

**Journal of Systems Science and Systems Engineering**

Expand All @@ -240,7 +240,7 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

**Future Generation Computer Systems**

[1] Nie, H., Zhao, X., Yao, X., Jiang, Q., Bi, X., Ma, Y., & Sun, Y. (2023). [Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0167739X23000195). Future Generation Computer Systems.
[1] (TAL-TKGC) Nie, H., Zhao, X., Yao, X., Jiang, Q., Bi, X., Ma, Y., & Sun, Y. (2023). [Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion](https://www.sciencedirect.com/science/article/pii/S0167739X23000195). Future Generation Computer Systems.

**Cognitive Computation**

Expand All @@ -252,31 +252,31 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

**IEEE Transactions on Knowledge and Data Engineering**

[1] Li, Y., Chen, H., Li, Y., Li, L., Philip, S. Y., & Xu, G. (2023). [Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation](https://arxiv.org/abs/2111.12262). IEEE Transactions on Knowledge and Data Engineering.
[1] Li, Y., Chen, H., Li, Y., Li, L., Philip, S. Y., & Xu, G. (2023). [Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation](https://arxiv.org/abs/2111.12262). IEEE Transactions on Knowledge and Data Engineering. [Github](https://github.com/Abigale001/TMER-RL)

**Knowledge-Based Systems**

[1] (RLAT) Bai, L., Chai, D., & Zhu, L. (2023). [RLAT: Multi-hop temporal knowledge graph reasoning based on Reinforcement Learning and Attention Mechanism](https://www.sciencedirect.com/science/article/pii/S0950705123002642). Knowledge-Based Systems, 269, 110514.

**Journal of Computational Design and Engineering**

[1] Zhu, L., Xing, Y., Bai, L., & Chen, X. (2023). [Few-shot link prediction with meta-learning for temporal knowledge graphs](https://academic.oup.com/jcde/article-abstract/10/2/711/7069330). Journal of Computational Design and Engineering, 10(2), 711-721.
[1] (MetaRT) Zhu, L., Xing, Y., Bai, L., & Chen, X. (2023). [Few-shot link prediction with meta-learning for temporal knowledge graphs](https://academic.oup.com/jcde/article-abstract/10/2/711/7069330). Journal of Computational Design and Engineering, 10(2), 711-721.

**Entropy**

[1] (IMF) Du, Z., Qu, L., Liang, Z., Huang, K., Cui, L., & Gao, Z. (2023). [IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs](https://www.mdpi.com/1099-4300/25/4/666). Entropy, 25(4), 666. [Github](https://github.com/lfxx123/TKBC)

**Complex & Intelligent Systems**

[1] Zhu, L., Bai, L., Han, S., & Zhang, M. (2023). [Few-shot temporal knowledge graph completion based on meta-optimization](https://link.springer.com/article/10.1007/s40747-023-01146-9). Complex & Intelligent Systems, 9(6), 7461-7474. [Github](https://github.com/DMKE-Lab/FTMO)
[1] (FTMO) Zhu, L., Bai, L., Han, S., & Zhang, M. (2023). [Few-shot temporal knowledge graph completion based on meta-optimization](https://link.springer.com/article/10.1007/s40747-023-01146-9). Complex & Intelligent Systems, 9(6), 7461-7474. [Github](https://github.com/DMKE-Lab/FTMO)

**World Wide Web**

[1] Bai, L., Zhang, M., Zhang, H., & Zhang, H. (2023). [FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism](https://link.springer.com/article/10.1007/s11280-022-01091-6). World Wide Web, 26(3), 1243-1270. [Github](https://github.com/DMKE-Lab/FTMF)
[1] (FTMF) Bai, L., Zhang, M., Zhang, H., & Zhang, H. (2023). [FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism](https://link.springer.com/article/10.1007/s11280-022-01091-6). World Wide Web, 26(3), 1243-1270. [Github](https://github.com/DMKE-Lab/FTMF)

**DMKD**

[1] Ma, R., Mei, B., Ma, Y., Zhang, H., Liu, M., & Zhao, L. (2023). [One-shot relational learning for extrapolation reasoning on temporal knowledge graphs](https://link.springer.com/article/10.1007/s10618-023-00935-7). Data Mining and Knowledge Discovery, 1-18.
[1] (OSLT) Ma, R., Mei, B., Ma, Y., Zhang, H., Liu, M., & Zhao, L. (2023). [One-shot relational learning for extrapolation reasoning on temporal knowledge graphs](https://link.springer.com/article/10.1007/s10618-023-00935-7). Data Mining and Knowledge Discovery, 1-18.

## 2022

Expand All @@ -299,20 +299,20 @@ Some papers on Temporal Knowledge Graph Embedding and Reasoning

**TKDD**

[1] (Tpmod) Bai, L., Ma, X., Zhang, M., & Yu, W. (2021). [Tpmod: A tendency-guided prediction model for temporal knowledge graph completion](https://dl.acm.org/doi/abs/10.1145/3443687). ACM Transactions on Knowledge Discovery from Data, 15(3), 1-17. [Github](https://github.com/DMKE-Lab/TPmod)
[1] (TPmod) Bai, L., Ma, X., Zhang, M., & Yu, W. (2021). [Tpmod: A tendency-guided prediction model for temporal knowledge graph completion](https://dl.acm.org/doi/abs/10.1145/3443687). ACM Transactions on Knowledge Discovery from Data, 15(3), 1-17. [Github](https://github.com/DMKE-Lab/TPmod)

[2] (Dacha) Chen, L., Tang, X., Chen, W., Qian, Y., Li, Y., & Zhang, Y. (2021). [Dacha: A dual graph convolution based temporal knowledge graph representation learning method using historical relation](https://dl.acm.org/doi/abs/10.1145/3477051). ACM Transactions on Knowledge Discovery from Data (TKDD), 16(3), 1-18.

## 2020

**IEEE Access**

[1] Tang, X., Yuan, R., Li, Q., Wang, T., Yang, H., Cai, Y., & Song, H. (2020). [Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution](https://ieeexplore.ieee.org/abstract/document/8950081/). IEEE Access, 8, 6849-6860.
[1] (TDG2E) Tang, X., Yuan, R., Li, Q., Wang, T., Yang, H., Cai, Y., & Song, H. (2020). [Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution](https://ieeexplore.ieee.org/abstract/document/8950081/). IEEE Access, 8, 6849-6860.

[2] Wang, J., Zhang, W., Chen, X., Lei, J., & Lai, X. (2020). [3drte: 3d rotation embedding in temporal knowledge graph](https://ieeexplore.ieee.org/abstract/document/9253009/). IEEE Access, 8, 207515-207523.
[2] (3DRTE) Wang, J., Zhang, W., Chen, X., Lei, J., & Lai, X. (2020). [3drte: 3d rotation embedding in temporal knowledge graph](https://ieeexplore.ieee.org/abstract/document/9253009/). IEEE Access, 8, 207515-207523.

## 2019

**Journal of Web Semantics**

[1] Ma, Y., Tresp, V., & Daxberger, E. A. (2019). [Embedding models for episodic knowledge graphs](https://www.sciencedirect.com/science/article/pii/S1570826818300702). Journal of Web Semantics, 59, 100490.
[1] (ConT) Ma, Y., Tresp, V., & Daxberger, E. A. (2019). [Embedding models for episodic knowledge graphs](https://www.sciencedirect.com/science/article/pii/S1570826818300702). Journal of Web Semantics, 59, 100490.

0 comments on commit 7a57a16

Please # to comment.