-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernelTest.py
108 lines (77 loc) · 3.63 KB
/
kernelTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import sys
sys.path.append("./stqft")
sys.path.append("./qcnn")
import os
#Activate the cuda env
os.environ["LD_LIBRARY_PATH"] = "$LD_LIBRARY_PATH:/usr/local/cuda/lib64/:/usr/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda-11.2/lib64:/usr/local/cuda/targets/x86_64-linux/lib/"
import time
import multiprocessing
import glob
import numpy as np
datasetPath = "/storage/mstrobl/dataset"
featurePath = "/storage/mstrobl/features"
checkpointsPath = "/storage/mstrobl/checkpoints"
modelsPath = "/storage/mstrobl/models"
quantumPath = "/storage/mstrobl/dataQuantum"
waveformPath = "/storage/mstrobl/waveforms"
checkpointsPath = "/storage/mstrobl/checkpoints"
exportPath = "/storage/mstrobl/versioning"
TOPIC = "PrepGenTrain"
batchSize = 4
kernelSize = 2
epochs = 30
portion = 2
PoolSize = int(multiprocessing.cpu_count()*0.6) #be gentle..
# PoolSize = 3 #be gentle..
if __name__ == '__main__':
from stqft.frontend import export
# export.checkWorkingTree(exportPath)
import argparse
parser = argparse.ArgumentParser()
args = parser.parse_args()
print(f"\n\n\n-----------------------\n\n\n")
print(f"Train Time @{time.time()}")
print(f"\n\n\n-----------------------\n\n\n")
multiprocessing.set_start_method('spawn')
print(f"Running {PoolSize} processes")
datasetFiles = glob.glob(datasetPath + "/**/*.wav", recursive=True)
print(f"Found {len(datasetFiles)} files in the dataset")
print(f"\n\n\n-----------------------\n\n\n")
print(f"Generating Waveforms @{time.time()}")
print(f"\n\n\n-----------------------\n\n\n")
from generateFeatures import gen_features, gen_quantum, reportSettings, samplingRate
from qcnn.small_qsr import labels
print("Loading from disk...")
x_train = np.load(f"{featurePath}/x_train_speech.npy")
x_valid = np.load(f"{featurePath}/x_valid_speech.npy")
y_train = np.load(f"{featurePath}/y_train_speech.npy")
y_valid = np.load(f"{featurePath}/y_valid_speech.npy")
print(f"\n\n\n-----------------------\n\n\n")
print(f"Generating Quantum Data @{time.time()}")
print(f"\n\n\n-----------------------\n\n\n")
print("Loading from disk...")
q_train_ref = np.load(f"{quantumPath}/quanv_train.npy")
q_valid_ref = np.load(f"{quantumPath}/quanv_valid.npy")
q_train, q_valid = gen_quantum(x_train, x_valid, kernelSize, output=None, poolSize=PoolSize, quanv=False)
assert q_train.shape == q_train_ref.shape
assert q_valid.shape == q_valid_ref.shape
# import matplotlib.pyplot as plt
# import librosa.display
# plt.figure()
# for i in range(4):
# plt.subplot(5, 1, i+2)
# librosa.display.specshow(librosa.power_to_db(q_train[0,:,:,i], ref=np.max))
# plt.title('Channel '+str(i+1)+': Quantum Compressed Speech')
# plt.tight_layout()
print(f"\n\n\n-----------------------\n\n\n")
print(f"Starting Training @{time.time()}")
print(f"\n\n\n-----------------------\n\n\n")
from fitModel import fit_model
# pass quanv data for training and validation
model, history = fit_model(q_train, y_train, q_valid, y_valid, checkpointsPath)
data_ix = time.strftime("%Y%m%d_%H%M")
model.save(f"{modelsPath}/model_{time.time()}")
exp = export(topic=TOPIC, identifier="model", dataDir=exportPath)
exp.setData(export.DESCRIPTION, f"Model trained (T)/ loaded (F): {args.train}; CheckpointsPath: {checkpointsPath}; ModelsPath: {modelsPath}")
exp.setData(export.GENERICDATA, {"history_acc":history.history['accuracy'], "history_val_acc":history.history['val_accuracy'], "history_loss":history.history['loss'], "history_val_loss":history.history['val_loss']})
exp.doExport()