forked from subond/SSS_OHC_TCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunction_compute_AMOC@40N.py
49 lines (44 loc) · 2.21 KB
/
Function_compute_AMOC@40N.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
## load libraries
from netCDF4 import Dataset
import numpy as np
from scipy import integrate
#####################################################################################
############################# Function of Computing AMOC ############################
#####################################################################################
def AMOC40N(input_dir, output_dir, sim_type, start_yr, end_yr):
fid = Dataset(input_dir+'3d_ocean_data_'+sim_type+'_'+np.str(start_yr)+'_'+np.str(end_yr)+'.nc')
levs = fid.variables['lev'][:]
lats = fid.variables['lat'][:]
lons = fid.variables['lon'][:]
lon_2d, lat_2d = np.meshgrid(lons, lats)
lon_2d_0_360 = lon_2d.copy()
lon_2d_0_360[lon_2d_0_360<0] = lon_2d_0_360[lon_2d_0_360<0] + 360.
rho = fid.variables['rho'][:]
rho[rho.mask==True] = np.nan
rho_5m = rho[0,:,:]
rho_int_1000m = integrate.simps(rho[levs<=1000,:,:], levs[levs<=1000], axis=0)/858.4215
rho_int_300m = integrate.simps(rho[levs<=300,:,:], levs[levs<=300], axis=0)/298.30493
######## compute AMOC strength at lat=40 ########
tmp = fid.variables['v'][:, (lats==latc-0.5) | (lats==latc+0.5), (lons>=-80.5) & (lons<=0.5)]
tmp[tmp.mask==True] = np.nan
v = np.nanmean(tmp, axis = 1)
del tmp
lons_amoc = lons[(lons>=-80.5) & (lons<=0.5)] * 110*10**3 * np.cos(latc*np.pi/180) # degree to m
amoc = np.zeros((np.shape(levs)[0],)) * np.nan
for j in np.arange(0,np.shape(amoc)[0]-1):
v_i = v[:j,:]
levs_i = levs[:j]
data = np.zeros((np.shape(lons_amoc)[0],)) * np.nan
for i in np.arange(0,np.shape(lons_amoc)[0]):
v_f = v_i[:,i][~np.isnan(v_i[:,i])]
levs_f = levs_i[~np.isnan(v_i[:,i])]
if levs_f.size > 1:
data[i] = integrate.simps(v_f, levs_f, axis=0)
dataf = data[~np.isnan(data)]
lons_amoc_f = lons_amoc[~np.isnan(data)]
if dataf.size > 1:
amoc[j] = np.nansum(dataf) * (lons_amoc[1] - lons_amoc[0])
# amoc[j] = integrate.simps(dataf, lons_amoc_f)
fid.close()
return amoc
np.savetxt(output_dir+'AMOC@40N_'+sim_type+'_'+str(start_yr)+'_'+str(end_yr)+'_pattern.txt', amoc, fmt='%2.3f', delimiter=' ')