forked from rkuga/ImageCaptioning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·73 lines (58 loc) · 2.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import argparse
import importlib
import sys,os
import random
from chainer import cuda
parser = argparse.ArgumentParser()
parser.add_argument('--batchsize', type=int, default=128, help='size of batch')
parser.add_argument('--gpu', type=int, default=0, help='run in specific GPU')
parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train')
parser.add_argument('--save_every', type=int, default=100, help='save the model every n epochs')
parser.add_argument('--net', type=str, default='captioning', help='import the network')
parser.add_argument('--load', nargs=2, type=str, default='', help='loading network parameters')
parser.add_argument('--mode', type=str, default='train', help='train/test')
parser.add_argument('--dataset', type=str, default='flickr8k', help='dataset')
parser.add_argument('--size', type=int, default=224, help='size')
parser.add_argument('--data_dir', type=str, default='.', help='dataset directory')
args = parser.parse_args()
print args
print "==> using network %s" % args.net
args_dict = dict(args._get_kwargs())
network_module = importlib.import_module("nets." + args.net)
network = network_module.Network(**args_dict)
def do_epoch(mode, epoch):
if mode=='train':
length=len(network.train_data)
perm = np.random.permutation(length)
if mode=='val':
length=len(network.test_data)
perm = np.array(range(length))
sum_loss = 0
sum_accuracy = 0
batches_per_epoch=length//args.batchsize
for batch_index in xrange(0, length-args.batchsize, args.batchsize):
step_data=network.step(perm,batch_index,mode,epoch)
prediction = step_data["prediction"]
current_loss = step_data["current_loss"]
current_accuracy = step_data["current_accuracy"]
sum_loss += current_loss
sum_accuracy += current_accuracy
if mode=='train':
print "epoch %d end loss: %.10f"%(epoch, sum_loss/batches_per_epoch),
print "train accuracy: %.10f"%(sum_accuracy/batches_per_epoch)
elif mode =='val':
print "val accuracy: %.10f"%(sum_accuracy/batches_per_epoch)
start_epoch=1
if args.load != '':
start_epoch=network.load_state(args.load[0], args.load[1])
if args.mode == 'train':
print "==> training"
for epoch in xrange(start_epoch,args.epochs+1):
do_epoch('train', epoch)
do_epoch('val',epoch)
if epoch % args.save_every == 0:
network.save_params(epoch)
elif args.mode == 'test':
print "==> testing"
network.test()