This repository has been archived by the owner on Feb 27, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
main.py
85 lines (74 loc) · 7.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#####################################################################################
# MIT License #
# #
# Copyright (C) 2019 Charly Lamothe #
# #
# This file is part of VQ-VAE-images. #
# #
# Permission is hereby granted, free of charge, to any person obtaining a copy #
# of this software and associated documentation files (the "Software"), to deal #
# in the Software without restriction, including without limitation the rights #
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #
# copies of the Software, and to permit persons to whom the Software is #
# furnished to do so, subject to the following conditions: #
# #
# The above copyright notice and this permission notice shall be included in all #
# copies or substantial portions of the Software. #
# #
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #
# SOFTWARE. #
#####################################################################################
from auto_encoder import AutoEncoder
from trainer import Trainer
from evaluator import Evaluator
from cifar10_dataset import Cifar10Dataset
from configuration import Configuration
import torch
import torch.optim as optim
import os
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', nargs='?', default=Configuration.default_batch_size, type=int, help='The size of the batch during training')
parser.add_argument('--num_training_updates', nargs='?', default=Configuration.default_num_training_updates, type=int, help='The number of updates during training')
parser.add_argument('--num_hiddens', nargs='?', default=Configuration.default_num_hiddens, type=int, help='The number of hidden neurons in each layer')
parser.add_argument('--num_residual_hiddens', nargs='?', default=Configuration.default_num_residual_hiddens, type=int, help='The number of hidden neurons in each layer within a residual block')
parser.add_argument('--num_residual_layers', nargs='?', default=Configuration.default_num_residual_layers, type=int, help='The number of residual layers in a residual stack')
parser.add_argument('--embedding_dim', nargs='?', default=Configuration.default_embedding_dim, type=int, help='Representing the dimensionality of the tensors in the quantized space')
parser.add_argument('--num_embeddings', nargs='?', default=Configuration.default_num_embeddings, type=int, help='The number of vectors in the quantized space')
parser.add_argument('--commitment_cost', nargs='?', default=Configuration.default_commitment_cost, type=float, help='Controls the weighting of the loss terms')
parser.add_argument('--decay', nargs='?', default=Configuration.default_decay, type=float, help='Decay for the moving averages (set to 0.0 to not use EMA)')
parser.add_argument('--learning_rate', nargs='?', default=Configuration.default_learning_rate, type=float, help='The learning rate of the optimizer during training updates')
parser.add_argument('--use_kaiming_normal', nargs='?', default=Configuration.default_use_kaiming_normal, type=bool, help='Use the weight normalization proposed in [He, K et al., 2015]')
parser.add_argument('--unshuffle_dataset', default=not Configuration.default_shuffle_dataset, action='store_true', help='Do not shuffle the dataset before training')
parser.add_argument('--data_path', nargs='?', default='data', type=str, help='The path of the data directory')
parser.add_argument('--results_path', nargs='?', default='results', type=str, help='The path of the results directory')
parser.add_argument('--loss_plot_name', nargs='?', default='loss.png', type=str, help='The file name of the training loss plot')
parser.add_argument('--model_name', nargs='?', default='model.pth', type=str, help='The file name of trained model')
parser.add_argument('--original_images_name', nargs='?', default='original_images.png', type=str, help='The file name of the original images used in evaluation')
parser.add_argument('--validation_images_name', nargs='?', default='validation_images.png', type=str, help='The file name of the reconstructed images used in evaluation')
args = parser.parse_args()
# Dataset and model hyperparameters
configuration = Configuration.build_from_args(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Use GPU if cuda is available
# Set the result path and create the directory if it doesn't exist
results_path = '..' + os.sep + args.results_path
if not os.path.isdir(results_path):
os.mkdir(results_path)
dataset_path = '..' + os.sep + args.data_path
dataset = Cifar10Dataset(configuration.batch_size, dataset_path, configuration.shuffle_dataset) # Create an instance of CIFAR10 dataset
auto_encoder = AutoEncoder(device, configuration).to(device) # Create an AutoEncoder model using our GPU device
optimizer = optim.Adam(auto_encoder.parameters(), lr=configuration.learning_rate, amsgrad=True) # Create an Adam optimizer instance
trainer = Trainer(device, auto_encoder, optimizer, dataset) # Create a trainer instance
trainer.train(configuration.num_training_updates) # Train our model on the CIFAR10 dataset
auto_encoder.save(results_path + os.sep + args.model_name) # Save our trained model
trainer.save_loss_plot(results_path + os.sep + args.loss_plot_name) # Save the loss plot
evaluator = Evaluator(device, auto_encoder, dataset) # Create en Evaluator instance to evaluate our trained model
evaluator.reconstruct() # Reconstruct our images from the embedded space
evaluator.save_original_images_plot(results_path + os.sep + args.original_images_name) # Save the original images for comparaison purpose
evaluator.save_validation_reconstructions_plot(results_path + os.sep + args.validation_images_name) # Reconstruct the decoded images and save them