-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbintools.py
50 lines (41 loc) · 1.41 KB
/
bintools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# https://github.com/VincentRagusa/binTools
#this function returns the optimal number of histogram bins to display the input data
def numBins(data):
from statistics import stdev
from numpy import sqrt, pi
STD = stdev(data)
if STD == 0:
return 1
LEN = len(data)
RNG = max(data)-min(data)
B = (24*sqrt(pi))**(1/3) * STD * LEN**(-1/3)
M = round(RNG/B)
return M
def kernel(u):
return (3/4)*(1-u**2) if -1 <= u <= 1 else 0
def F(data,h,t):
return (1/(len(data)*h))*sum([kernel((t-x)/h) for x in data])
#this function returns a curve that fits your data
#it is not a regression, it simply maps the outline of a histogram
def kernelFit(data):
from numpy import arange
from statistics import stdev
low = min(data)
high = max(data)
s = stdev(data)
h = 1.06*s*(len(data)**(-1/5))
r = high-low
curve = [[t,F(data,h,t)] for t in arange(low-0.05*r,high+0.05*r,r/100)]
return list(zip(*curve))
if __name__ == "__main__":
#here is a tutorial of sorts, it plots both the histogram and the fit-curve
import numpy as np
import matplotlib.pyplot as plt
#make some fake data
testData = np.random.default_rng().normal(0, 1, 1000)
#test the curve fitting
fitX, fitY = kernelFit(testData)
plt.plot(fitX,fitY)
#test the histogram with optimal bins
plt.hist(testData,bins=numBins(testData),density=True)
plt.show()