The MIT License (MIT)
Copyright (c) 2018-2020 CNRS
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
AUTHOR Hervé Bredin - http://herve.niderb.fr
In this tutorial, you will learn how to optimize a speaker diarization pipeline using pyannote-pipeline
command line tool.
This tutorial assumes that you have already followed the data preparation tutorial, and teaches how to optimize a speech activity detection pipeline using pyannote-pipeline
command line tool.
For simplicity, we will use a pretrained models for speech activity detection, speaker change detection, and speaker embeddings.
If you use pyannote-audio
for speaker diarization, please cite the following paper:
@inproceedings{Bredin2020,
Title = {{pyannote.audio: neural building blocks for speaker diarization}},
Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
Address = {Barcelona, Spain},
Month = {May},
Year = {2020},
}
We start by extracting raw scores/embeddings using the following pretrained models:
sad_ami
for speech activity detectionscd_ami
for speaker change detectionemb_ami
for speaker embedding
$ export EXP_DIR=tutorials/pipelines/speaker_diarization
$ for SUBSET in developement test
> do
> for TASK in sad scd emb
> do
> pyannote-audio ${TASK} apply --step=0.1 --pretrained=${TASK}_ami --subset=${SUBSET} ${EXP_DIR} AMI.SpeakerDiarization.MixHeadset
> done
> done
This tutorial relies on pretrained models available on torch.hub
but you could (should?) obviously use a locally trained or fine-tuned model.
In case you trained, validated and applied your own models by following the above tutorials, you may safely skip the corresponding pyannote-audio ... apply
steps because you do not need to extract scores and/or embeddings again.
To ensure reproducibility, pyannote-pipeline
relies on a configuration file defining the experimental setup:
$ cat ${EXP_DIR}/config.yml
pipeline:
name: pyannote.audio.pipeline.speaker_diarization.SpeakerDiarization
params:
# replace {{EXP_DIR}} by its actual value
sad_scores: {{EXP_DIR}}/sad_ami
scd_scores: {{EXP_DIR}}/scd_ami
embedding: {{EXP_DIR}}/emb_ami
method: affinity_propagation
# one can freeze some of the hyper-parameters
# for instance, in this example, we are using
# hyper-parameters obtained in the speech
# actitivy detection pipeline tutorial
freeze:
speech_turn_segmentation:
speech_activity_detection:
min_duration_off: 0.6315121069334447
min_duration_on: 0.0007366523493967721
offset: 0.5727193137037349
onset: 0.5842225805454029
pad_offset: 0.0
pad_onset: 0.0
If you are using any models that you trained, validated and applied locally trained or fine-tuned models, and want to use your own set of scores, use their own paths instead. The example below uses pretrained embeddings but locally trained sad
and scd
scores:
$ cat ${EXP_DIR}/config.yml
pipeline:
name: pyannote.audio.pipeline.speaker_diarization.SpeakerDiarization
params:
sad_scores: /path/to/sad/experiment/train/{{TRAINING_SET}}/validate_detection_fscore/{{VALIDATION_SET}}/apply/{{BEST_EPOCH}}
scd_scores: /path/to/scd/experiment/train/{{TRAINING_SET}}/validate_detection_fscore/{{VALIDATION_SET}}/apply/{{BEST_EPOCH}}
# replace {{EXP_DIR}} by its actual value
embedding: {{EXP_DIR}}/emb_ami
method: affinity_propagation
# one can freeze some of the hyper-parameters
# for instance, in this example, we are using
# hyper-parameters obtained in the speech
# actitivy detection pipeline tutorial
freeze:
speech_turn_segmentation:
speech_activity_detection:
min_duration_off: 0.6315121069334447
min_duration_on: 0.0007366523493967721
offset: 0.5727193137037349
onset: 0.5842225805454029
pad_offset: 0.0
pad_onset: 0.0
The following command will run hyper-parameter optimization on the development subset of the AMI database. One can run it multiple times in parallel to speed things up.
$ pyannote-pipeline train --subset=development --forever ${EXP_DIR} AMI.SpeakerDiarization.MixHeadset
Note that we use the development
subset for optimizing the pipeline hper-parameters because the train
subset has usually already been used for training the model itself.
This will create a bunch of files in TRN_DIR
, including params.yml
that contains the (so far) optimal parameters.
$ export TRN_DIR=${EXP_DIR}/train/AMI.SpeakerDiarization.MixHeadset.development
$ cat ${TRN_DIR}/params.yml
loss: 0.3455305333795955
params:
min_duration: 3.306092065580709
speech_turn_assignment:
closest_assignment:
threshold: 0.8401481964056187
speech_turn_clustering:
clustering:
damping: 0.6066098204003955
preference: -2.9717704925136976
speech_turn_segmentation:
speaker_change_detection:
alpha: 0.11115647156273972
min_duration: 0.5283486365753665
speech_activity_detection:
min_duration_off: 0.6315121069334447
min_duration_on: 0.0007366523493967721
offset: 0.5727193137037349
onset: 0.5842225805454029
pad_offset: 0.0
pad_onset: 0.0
The loss:
value actually corresponds to the metric that is currently being optimized. For speaker diarization, the loss diarization error rate.
See pyannote.audio.pipeline.speaker_diarization.SpeakerDiarization
docstring for details about the params:
section.
Note that the actual content of your params.yml
might vary because the optimisation process is not deterministic: the longer you wait, the better it gets.
There is no easy way to decide if/when the optimization has converged to the optimal setting. The pyannote-pipeline train
command will run forever, looking for a better set of hyper-parameters.
The optimized pipeline can then be applied on the test
subset:
$ pyannote-pipeline apply --subset=test ${TRN_DIR} AMI.SpeakerDiarization.MixHeadset
This will create a bunch of files in ${TRN_DIR}/apply/latest
subdirectory, including
AMI.SpeakerDiarization.MixHeadset.test.rttm
that contains the actual output of the optimized pipelineAMI.SpeakerDiarization.MixHeadset.test.eval
that provides an evaluation of the result (more or less equivalent to what you would get by usingpyannote.metrics
command line tool).
This pipeline reaches 32.2% DER with no collar:
$ pyannote-metrics diarization AMI.SpeakerDiarization.MixHeadset ${TRN_DIR}/apply/latest/AMI.SpeakerDiarization.MixHeadset.test.rttm
Diarization (collar = 0 ms) diarization error rate purity coverage total correct % false alarm % missed detection % confusion %
----------------------------- ------------------------ -------- ---------- -------- --------- ----- ------------- ---- ------------------ ----- ----------- -----
EN2002a.Mix-Headset 43.21 59.42 58.64 2910.97 1691.18 58.10 37.92 1.30 992.73 34.10 227.06 7.80
EN2002b.Mix-Headset 40.34 62.22 61.69 2173.78 1328.82 61.13 31.88 1.47 673.58 30.99 171.38 7.88
EN2002c.Mix-Headset 31.56 70.58 70.56 3551.64 2467.64 69.48 36.93 1.04 955.66 26.91 128.33 3.61
EN2002d.Mix-Headset 46.52 55.64 62.42 3042.98 1673.47 54.99 45.97 1.51 1089.70 35.81 279.81 9.20
ES2004a.Mix-Headset 32.38 72.72 72.72 1051.71 737.47 70.12 26.30 2.50 260.22 24.74 54.01 5.14
ES2004b.Mix-Headset 22.83 80.78 80.78 2403.80 1912.32 79.55 57.35 2.39 369.74 15.38 121.74 5.06
ES2004c.Mix-Headset 25.36 78.18 78.18 2439.53 1895.33 77.69 74.36 3.05 392.17 16.08 152.03 6.23
ES2004d.Mix-Headset 35.10 69.51 69.37 2258.48 1525.98 67.57 60.19 2.67 507.71 22.48 224.79 9.95
ES2014a.Mix-Headset 38.06 70.57 77.58 1071.36 698.70 65.22 35.14 3.28 249.44 23.28 123.21 11.50
ES2014b.Mix-Headset 24.90 80.45 80.39 2194.21 1699.32 77.45 51.55 2.35 356.14 16.23 138.75 6.32
ES2014c.Mix-Headset 28.81 75.69 75.65 2286.85 1689.44 73.88 61.33 2.68 427.18 18.68 170.23 7.44
ES2014d.Mix-Headset 29.89 75.73 75.50 2906.15 2116.52 72.83 79.09 2.72 561.41 19.32 228.22 7.85
IS1009a.Mix-Headset 39.07 65.67 85.52 771.77 502.75 65.14 32.52 4.21 146.77 19.02 122.25 15.84
IS1009b.Mix-Headset 23.38 78.82 78.82 2074.64 1629.99 78.57 40.45 1.95 284.50 13.71 160.14 7.72
IS1009c.Mix-Headset 18.35 86.00 85.94 1680.33 1437.65 85.56 65.64 3.91 152.26 9.06 90.43 5.38
IS1009d.Mix-Headset 36.34 68.28 76.39 1891.66 1277.60 67.54 73.37 3.88 312.00 16.49 302.07 15.97
TS3003a.Mix-Headset 31.10 76.99 83.70 1209.19 861.34 71.23 28.18 2.33 240.27 19.87 107.58 8.90
TS3003b.Mix-Headset 21.62 84.25 84.25 2011.71 1649.26 81.98 72.40 3.60 229.24 11.40 133.21 6.62
TS3003c.Mix-Headset 23.82 83.40 83.39 2086.65 1655.75 79.35 66.12 3.17 287.59 13.78 143.30 6.87
TS3003d.Mix-Headset 39.42 68.00 67.78 2394.10 1530.02 63.91 79.67 3.33 536.78 22.42 327.30 13.67
TS3007a.Mix-Headset 38.59 67.35 83.73 1446.64 953.88 65.94 65.51 4.53 274.90 19.00 217.86 15.06
TS3007b.Mix-Headset 20.67 82.52 82.51 2518.34 2066.54 82.06 68.72 2.73 277.84 11.03 173.96 6.91
TS3007c.Mix-Headset 33.20 69.63 69.63 2902.52 2010.07 69.25 71.18 2.45 681.09 23.47 211.36 7.28
TS3007d.Mix-Headset 44.10 63.69 63.69 3038.05 1928.17 63.47 229.80 7.56 709.90 23.37 399.99 13.17
TOTAL 32.24 72.22 73.84 52317.07 36939.21 70.61 1491.56 2.85 10968.84 20.97 4409.02 8.43
and 11.7% DER with +/- 250ms collar and without scoring overlap regions:
$ pyannote-metrics diarization --collar=0.5 --skip-overlap AMI.SpeakerDiarization.MixHeadset ${TRN_DIR}/apply/latest/AMI.SpeakerDiarization.MixHeadset.test.rttm
Diarization (collar = 500 ms, no overlap) diarization error rate purity coverage total correct % false alarm % missed detection % confusion %
------------------------------------------- ------------------------ -------- ---------- -------- --------- ----- ------------- ----- ------------------ ---- ----------- -----
EN2002a.Mix-Headset 9.60 92.56 61.94 1032.05 936.97 90.79 4.04 0.39 18.25 1.77 76.83 7.44
EN2002b.Mix-Headset 9.08 93.16 65.11 853.56 781.02 91.50 4.95 0.58 13.70 1.61 58.83 6.89
EN2002c.Mix-Headset 6.94 96.45 72.71 1641.68 1539.29 93.76 11.57 0.70 45.76 2.79 56.63 3.45
EN2002d.Mix-Headset 16.01 86.32 64.72 1006.27 855.91 85.06 10.77 1.07 14.46 1.44 135.90 13.51
ES2004a.Mix-Headset 9.90 95.82 75.44 539.48 495.14 91.78 9.09 1.68 22.74 4.21 21.60 4.00
ES2004b.Mix-Headset 6.86 95.85 82.73 1581.55 1494.85 94.52 21.82 1.38 21.96 1.39 64.75 4.09
ES2004c.Mix-Headset 7.82 94.55 80.23 1526.44 1435.10 94.02 27.97 1.83 8.60 0.56 82.74 5.42
ES2004d.Mix-Headset 13.18 90.49 72.49 1172.72 1032.94 88.08 14.83 1.26 29.32 2.50 110.46 9.42
ES2014a.Mix-Headset 24.63 86.20 78.71 688.23 541.13 78.63 22.43 3.26 60.47 8.79 86.63 12.59
ES2014b.Mix-Headset 9.39 94.74 82.55 1460.75 1335.75 91.44 12.20 0.84 50.90 3.48 74.10 5.07
ES2014c.Mix-Headset 10.78 93.09 77.66 1381.93 1255.55 90.85 22.63 1.64 33.14 2.40 93.24 6.75
ES2014d.Mix-Headset 12.28 92.46 78.01 1727.88 1538.56 89.04 22.85 1.32 62.36 3.61 126.97 7.35
IS1009a.Mix-Headset 23.88 80.11 87.01 425.01 338.36 79.61 14.86 3.50 2.18 0.51 84.47 19.88
IS1009b.Mix-Headset 6.40 94.48 81.23 1412.03 1330.36 94.22 8.68 0.62 3.94 0.28 77.72 5.50
IS1009c.Mix-Headset 5.50 96.73 87.56 1281.21 1235.24 96.41 24.52 1.91 4.07 0.32 41.90 3.27
IS1009d.Mix-Headset 17.64 84.94 78.42 1163.96 980.83 84.27 22.15 1.90 8.08 0.69 175.05 15.04
TS3003a.Mix-Headset 15.06 92.26 85.78 802.77 687.10 85.59 5.21 0.65 57.99 7.22 57.68 7.18
TS3003b.Mix-Headset 9.70 94.48 86.11 1504.39 1394.90 92.72 36.37 2.42 28.07 1.87 81.42 5.41
TS3003c.Mix-Headset 12.91 93.80 85.21 1556.34 1392.06 89.44 36.60 2.35 72.19 4.64 92.08 5.92
TS3003d.Mix-Headset 22.34 85.55 70.82 1353.46 1077.55 79.61 26.40 1.95 90.09 6.66 185.81 13.73
TS3007a.Mix-Headset 17.15 86.65 85.70 805.86 689.05 85.50 21.35 2.65 10.43 1.29 106.39 13.20
TS3007b.Mix-Headset 6.84 94.71 84.72 1810.40 1707.00 94.29 20.50 1.13 8.07 0.45 95.33 5.27
TS3007c.Mix-Headset 7.15 94.42 72.36 1483.67 1395.42 94.05 17.89 1.21 5.78 0.39 82.47 5.56
TS3007d.Mix-Headset 22.83 87.54 67.03 1392.85 1214.14 87.17 139.31 10.00 5.95 0.43 172.77 12.40
TOTAL 11.75 92.29 76.45 29604.50 26684.24 90.14 559.00 1.89 678.50 2.29 2241.76 7.57
For more options, see:
$ pyannote-pipeline --help
That's all folks!