Skip to content

Latest commit

 

History

History
 
 

speaker_diarization

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

The MIT License (MIT)

Copyright (c) 2018-2020 CNRS

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

AUTHOR Hervé Bredin - http://herve.niderb.fr

Speaker diarization pipeline with pyannote.audio

In this tutorial, you will learn how to optimize a speaker diarization pipeline using pyannote-pipeline command line tool.

This tutorial assumes that you have already followed the data preparation tutorial, and teaches how to optimize a speech activity detection pipeline using pyannote-pipeline command line tool.

For simplicity, we will use a pretrained models for speech activity detection, speaker change detection, and speaker embeddings.

Table of contents

Citation

(↑up to table of contents)

If you use pyannote-audio for speaker diarization, please cite the following paper:

@inproceedings{Bredin2020,
  Title = {{pyannote.audio: neural building blocks for speaker diarization}},
  Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
  Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
  Address = {Barcelona, Spain},
  Month = {May},
  Year = {2020},
}

Raw scores extraction

(↑up to table of contents)

We start by extracting raw scores/embeddings using the following pretrained models:

  • sad_ami for speech activity detection
  • scd_ami for speaker change detection
  • emb_ami for speaker embedding
$ export EXP_DIR=tutorials/pipelines/speaker_diarization

$ for SUBSET in developement test
 > do
 > for TASK in sad scd emb
 >  do
 >    pyannote-audio ${TASK} apply --step=0.1 --pretrained=${TASK}_ami --subset=${SUBSET} ${EXP_DIR} AMI.SpeakerDiarization.MixHeadset    
 >  done
 > done

This tutorial relies on pretrained models available on torch.hub but you could (should?) obviously use a locally trained or fine-tuned model. In case you trained, validated and applied your own models by following the above tutorials, you may safely skip the corresponding pyannote-audio ... apply steps because you do not need to extract scores and/or embeddings again.

Configuration

(↑up to table of contents)

To ensure reproducibility, pyannote-pipeline relies on a configuration file defining the experimental setup:

$ cat ${EXP_DIR}/config.yml
pipeline:
  name: pyannote.audio.pipeline.speaker_diarization.SpeakerDiarization
  params:
    # replace {{EXP_DIR}} by its actual value
    sad_scores: {{EXP_DIR}}/sad_ami
    scd_scores: {{EXP_DIR}}/scd_ami
    embedding: {{EXP_DIR}}/emb_ami
    method: affinity_propagation

# one can freeze some of the hyper-parameters
# for instance, in this example, we are using
# hyper-parameters obtained in the speech 
# actitivy detection pipeline tutorial
freeze:
  speech_turn_segmentation:
    speech_activity_detection:
      min_duration_off: 0.6315121069334447
      min_duration_on: 0.0007366523493967721
      offset: 0.5727193137037349
      onset: 0.5842225805454029
      pad_offset: 0.0
      pad_onset: 0.0

If you are using any models that you trained, validated and applied locally trained or fine-tuned models, and want to use your own set of scores, use their own paths instead. The example below uses pretrained embeddings but locally trained sad and scd scores:

$ cat ${EXP_DIR}/config.yml
pipeline:
  name: pyannote.audio.pipeline.speaker_diarization.SpeakerDiarization
  params:
    sad_scores: /path/to/sad/experiment/train/{{TRAINING_SET}}/validate_detection_fscore/{{VALIDATION_SET}}/apply/{{BEST_EPOCH}}
    scd_scores: /path/to/scd/experiment/train/{{TRAINING_SET}}/validate_detection_fscore/{{VALIDATION_SET}}/apply/{{BEST_EPOCH}}
    # replace {{EXP_DIR}} by its actual value
    embedding: {{EXP_DIR}}/emb_ami
    method: affinity_propagation

# one can freeze some of the hyper-parameters
# for instance, in this example, we are using
# hyper-parameters obtained in the speech 
# actitivy detection pipeline tutorial
freeze:
  speech_turn_segmentation:
    speech_activity_detection:
      min_duration_off: 0.6315121069334447
      min_duration_on: 0.0007366523493967721
      offset: 0.5727193137037349
      onset: 0.5842225805454029
      pad_offset: 0.0
      pad_onset: 0.0

Training

(↑up to table of contents)

The following command will run hyper-parameter optimization on the development subset of the AMI database. One can run it multiple times in parallel to speed things up.

$ pyannote-pipeline train --subset=development --forever ${EXP_DIR} AMI.SpeakerDiarization.MixHeadset

Note that we use the development subset for optimizing the pipeline hper-parameters because the train subset has usually already been used for training the model itself.

This will create a bunch of files in TRN_DIR, including params.yml that contains the (so far) optimal parameters.

$ export TRN_DIR=${EXP_DIR}/train/AMI.SpeakerDiarization.MixHeadset.development
$ cat ${TRN_DIR}/params.yml
loss: 0.3455305333795955
params:
  min_duration: 3.306092065580709
  speech_turn_assignment:
    closest_assignment:
      threshold: 0.8401481964056187
  speech_turn_clustering:
    clustering:
      damping: 0.6066098204003955
      preference: -2.9717704925136976
  speech_turn_segmentation:
    speaker_change_detection:
      alpha: 0.11115647156273972
      min_duration: 0.5283486365753665
    speech_activity_detection:
      min_duration_off: 0.6315121069334447
      min_duration_on: 0.0007366523493967721
      offset: 0.5727193137037349
      onset: 0.5842225805454029
      pad_offset: 0.0
      pad_onset: 0.0

The loss: value actually corresponds to the metric that is currently being optimized. For speaker diarization, the loss diarization error rate.

See pyannote.audio.pipeline.speaker_diarization.SpeakerDiarization docstring for details about the params: section.

Note that the actual content of your params.yml might vary because the optimisation process is not deterministic: the longer you wait, the better it gets.

There is no easy way to decide if/when the optimization has converged to the optimal setting. The pyannote-pipeline train command will run forever, looking for a better set of hyper-parameters.

Application

(↑up to table of contents)

The optimized pipeline can then be applied on the test subset:

$ pyannote-pipeline apply --subset=test ${TRN_DIR} AMI.SpeakerDiarization.MixHeadset

This will create a bunch of files in ${TRN_DIR}/apply/latest subdirectory, including

  • AMI.SpeakerDiarization.MixHeadset.test.rttm that contains the actual output of the optimized pipeline
  • AMI.SpeakerDiarization.MixHeadset.test.eval that provides an evaluation of the result (more or less equivalent to what you would get by using pyannote.metrics command line tool).

This pipeline reaches 32.2% DER with no collar:

$ pyannote-metrics diarization AMI.SpeakerDiarization.MixHeadset ${TRN_DIR}/apply/latest/AMI.SpeakerDiarization.MixHeadset.test.rttm
Diarization (collar = 0 ms)      diarization error rate    purity    coverage     total    correct      %    false alarm     %    missed detection      %    confusion      %
-----------------------------  ------------------------  --------  ----------  --------  ---------  -----  -------------  ----  ------------------  -----  -----------  -----
EN2002a.Mix-Headset                               43.21     59.42       58.64   2910.97    1691.18  58.10          37.92  1.30              992.73  34.10       227.06   7.80
EN2002b.Mix-Headset                               40.34     62.22       61.69   2173.78    1328.82  61.13          31.88  1.47              673.58  30.99       171.38   7.88
EN2002c.Mix-Headset                               31.56     70.58       70.56   3551.64    2467.64  69.48          36.93  1.04              955.66  26.91       128.33   3.61
EN2002d.Mix-Headset                               46.52     55.64       62.42   3042.98    1673.47  54.99          45.97  1.51             1089.70  35.81       279.81   9.20
ES2004a.Mix-Headset                               32.38     72.72       72.72   1051.71     737.47  70.12          26.30  2.50              260.22  24.74        54.01   5.14
ES2004b.Mix-Headset                               22.83     80.78       80.78   2403.80    1912.32  79.55          57.35  2.39              369.74  15.38       121.74   5.06
ES2004c.Mix-Headset                               25.36     78.18       78.18   2439.53    1895.33  77.69          74.36  3.05              392.17  16.08       152.03   6.23
ES2004d.Mix-Headset                               35.10     69.51       69.37   2258.48    1525.98  67.57          60.19  2.67              507.71  22.48       224.79   9.95
ES2014a.Mix-Headset                               38.06     70.57       77.58   1071.36     698.70  65.22          35.14  3.28              249.44  23.28       123.21  11.50
ES2014b.Mix-Headset                               24.90     80.45       80.39   2194.21    1699.32  77.45          51.55  2.35              356.14  16.23       138.75   6.32
ES2014c.Mix-Headset                               28.81     75.69       75.65   2286.85    1689.44  73.88          61.33  2.68              427.18  18.68       170.23   7.44
ES2014d.Mix-Headset                               29.89     75.73       75.50   2906.15    2116.52  72.83          79.09  2.72              561.41  19.32       228.22   7.85
IS1009a.Mix-Headset                               39.07     65.67       85.52    771.77     502.75  65.14          32.52  4.21              146.77  19.02       122.25  15.84
IS1009b.Mix-Headset                               23.38     78.82       78.82   2074.64    1629.99  78.57          40.45  1.95              284.50  13.71       160.14   7.72
IS1009c.Mix-Headset                               18.35     86.00       85.94   1680.33    1437.65  85.56          65.64  3.91              152.26   9.06        90.43   5.38
IS1009d.Mix-Headset                               36.34     68.28       76.39   1891.66    1277.60  67.54          73.37  3.88              312.00  16.49       302.07  15.97
TS3003a.Mix-Headset                               31.10     76.99       83.70   1209.19     861.34  71.23          28.18  2.33              240.27  19.87       107.58   8.90
TS3003b.Mix-Headset                               21.62     84.25       84.25   2011.71    1649.26  81.98          72.40  3.60              229.24  11.40       133.21   6.62
TS3003c.Mix-Headset                               23.82     83.40       83.39   2086.65    1655.75  79.35          66.12  3.17              287.59  13.78       143.30   6.87
TS3003d.Mix-Headset                               39.42     68.00       67.78   2394.10    1530.02  63.91          79.67  3.33              536.78  22.42       327.30  13.67
TS3007a.Mix-Headset                               38.59     67.35       83.73   1446.64     953.88  65.94          65.51  4.53              274.90  19.00       217.86  15.06
TS3007b.Mix-Headset                               20.67     82.52       82.51   2518.34    2066.54  82.06          68.72  2.73              277.84  11.03       173.96   6.91
TS3007c.Mix-Headset                               33.20     69.63       69.63   2902.52    2010.07  69.25          71.18  2.45              681.09  23.47       211.36   7.28
TS3007d.Mix-Headset                               44.10     63.69       63.69   3038.05    1928.17  63.47         229.80  7.56              709.90  23.37       399.99  13.17
TOTAL                                             32.24     72.22       73.84  52317.07   36939.21  70.61        1491.56  2.85            10968.84  20.97      4409.02   8.43

and 11.7% DER with +/- 250ms collar and without scoring overlap regions:

$ pyannote-metrics diarization --collar=0.5 --skip-overlap AMI.SpeakerDiarization.MixHeadset ${TRN_DIR}/apply/latest/AMI.SpeakerDiarization.MixHeadset.test.rttm
Diarization (collar = 500 ms, no overlap)      diarization error rate    purity    coverage     total    correct      %    false alarm      %    missed detection     %    confusion      %
-------------------------------------------  ------------------------  --------  ----------  --------  ---------  -----  -------------  -----  ------------------  ----  -----------  -----
EN2002a.Mix-Headset                                              9.60     92.56       61.94   1032.05     936.97  90.79           4.04   0.39               18.25  1.77        76.83   7.44
EN2002b.Mix-Headset                                              9.08     93.16       65.11    853.56     781.02  91.50           4.95   0.58               13.70  1.61        58.83   6.89
EN2002c.Mix-Headset                                              6.94     96.45       72.71   1641.68    1539.29  93.76          11.57   0.70               45.76  2.79        56.63   3.45
EN2002d.Mix-Headset                                             16.01     86.32       64.72   1006.27     855.91  85.06          10.77   1.07               14.46  1.44       135.90  13.51
ES2004a.Mix-Headset                                              9.90     95.82       75.44    539.48     495.14  91.78           9.09   1.68               22.74  4.21        21.60   4.00
ES2004b.Mix-Headset                                              6.86     95.85       82.73   1581.55    1494.85  94.52          21.82   1.38               21.96  1.39        64.75   4.09
ES2004c.Mix-Headset                                              7.82     94.55       80.23   1526.44    1435.10  94.02          27.97   1.83                8.60  0.56        82.74   5.42
ES2004d.Mix-Headset                                             13.18     90.49       72.49   1172.72    1032.94  88.08          14.83   1.26               29.32  2.50       110.46   9.42
ES2014a.Mix-Headset                                             24.63     86.20       78.71    688.23     541.13  78.63          22.43   3.26               60.47  8.79        86.63  12.59
ES2014b.Mix-Headset                                              9.39     94.74       82.55   1460.75    1335.75  91.44          12.20   0.84               50.90  3.48        74.10   5.07
ES2014c.Mix-Headset                                             10.78     93.09       77.66   1381.93    1255.55  90.85          22.63   1.64               33.14  2.40        93.24   6.75
ES2014d.Mix-Headset                                             12.28     92.46       78.01   1727.88    1538.56  89.04          22.85   1.32               62.36  3.61       126.97   7.35
IS1009a.Mix-Headset                                             23.88     80.11       87.01    425.01     338.36  79.61          14.86   3.50                2.18  0.51        84.47  19.88
IS1009b.Mix-Headset                                              6.40     94.48       81.23   1412.03    1330.36  94.22           8.68   0.62                3.94  0.28        77.72   5.50
IS1009c.Mix-Headset                                              5.50     96.73       87.56   1281.21    1235.24  96.41          24.52   1.91                4.07  0.32        41.90   3.27
IS1009d.Mix-Headset                                             17.64     84.94       78.42   1163.96     980.83  84.27          22.15   1.90                8.08  0.69       175.05  15.04
TS3003a.Mix-Headset                                             15.06     92.26       85.78    802.77     687.10  85.59           5.21   0.65               57.99  7.22        57.68   7.18
TS3003b.Mix-Headset                                              9.70     94.48       86.11   1504.39    1394.90  92.72          36.37   2.42               28.07  1.87        81.42   5.41
TS3003c.Mix-Headset                                             12.91     93.80       85.21   1556.34    1392.06  89.44          36.60   2.35               72.19  4.64        92.08   5.92
TS3003d.Mix-Headset                                             22.34     85.55       70.82   1353.46    1077.55  79.61          26.40   1.95               90.09  6.66       185.81  13.73
TS3007a.Mix-Headset                                             17.15     86.65       85.70    805.86     689.05  85.50          21.35   2.65               10.43  1.29       106.39  13.20
TS3007b.Mix-Headset                                              6.84     94.71       84.72   1810.40    1707.00  94.29          20.50   1.13                8.07  0.45        95.33   5.27
TS3007c.Mix-Headset                                              7.15     94.42       72.36   1483.67    1395.42  94.05          17.89   1.21                5.78  0.39        82.47   5.56
TS3007d.Mix-Headset                                             22.83     87.54       67.03   1392.85    1214.14  87.17         139.31  10.00                5.95  0.43       172.77  12.40
TOTAL                                                           11.75     92.29       76.45  29604.50   26684.24  90.14         559.00   1.89              678.50  2.29      2241.76   7.57

More options

For more options, see:

$ pyannote-pipeline --help

That's all folks!