-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
135 lines (107 loc) · 4.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import math
import numpy as np
import random
import torch
import torch.nn as nn
from transformers import BertModel
class Embeddings(nn.Module):
def __init__(self, n_token, d_model):
super().__init__()
self.lut = nn.Embedding(n_token, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
# BERT model: similar approach to "felix"
class MidiBert(nn.Module):
def __init__(self, bertConfig):
super().__init__()
self.bert = BertModel(bertConfig)
bertConfig.d_model = bertConfig.hidden_size
self.hidden_size = bertConfig.hidden_size
self.bertConfig = bertConfig
# token types: [Pitch, Velocity, Duration, Position, Bar]
self.n_tokens = [89, 66, 4609, 1537, 518] # [3,18,88,66]
self.classes = ['Pitch', 'Velocity', 'Duration', 'Position', 'Bar']
self.emb_sizes = [32, 64, 512, 256, 128]
# word_emb: embeddings to change token ids into embeddings
self.word_emb = []
for i in range(len(self.classes)):
self.word_emb.append(Embeddings(self.n_tokens[i], self.emb_sizes[i]))
self.word_emb = nn.ModuleList(self.word_emb)
# linear layer to merge embeddings from different token types
self.in_linear = nn.Linear(np.sum(self.emb_sizes), bertConfig.d_model)
self.dense = nn.Linear(6, bertConfig.d_model)
def forward(self, input_ids, attn_mask=None, output_hidden_states=True):
# convert input_ids into embeddings and merge them through linear layer
emb_linear = self.dense(input_ids.float())
# feed to bert
y = self.bert(inputs_embeds=emb_linear, attention_mask=attn_mask, output_hidden_states=output_hidden_states)
return y
def get_rand_tok(self):
vel_rand = random.choice(range(self.n_tokens[1]))
return vel_rand
class MidiBertLM(nn.Module):
def __init__(self, midibert: MidiBert):
super().__init__()
self.midibert = midibert
self.mask_lm = MLM(self.midibert.hidden_size)
def forward(self, x, attn, performer):
x = self.midibert(x, attn)
return self.mask_lm(x, performer)
class VelActivation(nn.Module):
def __init__(self, inputs=None):
super(VelActivation, self).__init__()
if inputs is not None:
self.inputs = inputs
def forward(self, x):
return torch.clamp(x, 0, 66)
class DurActivation(nn.Module):
def __init__(self, inputs=None):
super(DurActivation, self).__init__()
if inputs is not None:
self.inputs = inputs
def forward(self, x):
return torch.clamp(x, -1000, 1000)
class PosActivation(nn.Module):
def __init__(self, inputs=None):
super(PosActivation, self).__init__()
if inputs is not None:
self.inputs = inputs
def forward(self, x):
return torch.clamp(x, 0)
class MLM(nn.Module):
def __init__(self, hidden_size):
super().__init__()
# proj: project embeddings to logits for prediction
self.proj = []
for i in range(3):
self.proj.append(nn.Linear(hidden_size + 128, 1))
self.proj = nn.ModuleList(self.proj)
self.dense = nn.Linear(hidden_size + 128, 128)
self.performer_emb = Embeddings(6, 128) #final: 128
self.velact = VelActivation()
self.duract = DurActivation()
self.posact = PosActivation()
self.dropout = nn.Dropout(0.1)
def forward(self, y, performer):
# feed to bert
y = y.hidden_states[-1]
y_p = self.performer_emb(performer)
y_p = y_p[:, None, :]
y_p = torch.repeat_interleave(y_p, 1000, dim=1)
y = torch.cat([y, y_p], dim=-1)
ys = []
for i in range(3):
if i == 0:
y0 = self.proj[i](y)
y0 = self.velact(y0)
ys.append(y0) # (batch_size, seq_len, dict_size)
elif i == 1:
y1 = self.proj[i](y)
y1 = self.duract(y1)
ys.append(y1) # (batch_size, seq_len, dict_size)
elif i == 2:
y2 = self.proj[i](y)
y2 = self.posact(y2)
ys.append(y2) # (batch_size, seq_len, dict_size)
return ys