-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathmtcnn.py
259 lines (229 loc) · 10.5 KB
/
mtcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable
from mtcnn_pytorch.src.get_nets import PNet, RNet, ONet
from mtcnn_pytorch.src.box_utils import nms, calibrate_box, get_image_boxes, convert_to_square
from mtcnn_pytorch.src.first_stage import run_first_stage
from mtcnn_pytorch.src.align_trans import get_reference_facial_points, warp_and_crop_face
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = 'cpu'
class MTCNN():
def __init__(self):
self.pnet = PNet().to(device)
self.rnet = RNet().to(device)
self.onet = ONet().to(device)
self.pnet.eval()
self.rnet.eval()
self.onet.eval()
self.refrence = get_reference_facial_points(default_square= True)
def align(self, img, crop_size=(112, 112), return_trans_inv=False):
_, landmarks = self.detect_faces(img)
if len(landmarks) == 0:
return None if not return_trans_inv else (None, None)
facial5points = [[landmarks[0][j],landmarks[0][j+5]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=crop_size,
return_trans_inv=return_trans_inv)
if return_trans_inv:
return Image.fromarray(warped_face[0]), warped_face[1]
else:
return Image.fromarray(warped_face)
def align_fully(self, img, crop_size=(112, 112), return_trans_inv=False, ori=[0, 1, 3], fast_mode=True):
ori_size = img.copy()
h = img.size[1]
w = img.size[0]
sw = 320. if fast_mode else w
scale = sw / w
img = img.resize((int(w*scale), int(h*scale)))
candi = []
for i in ori:
if len(candi) > 0:
break
if i > 0:
rimg = img.transpose(i+1)
else:
rimg = img
box, landmarks = self.detect_faces(rimg, min_face_size=sw/10, thresholds=[0.6, 0.7, 0.7])
landmarks /= scale
if len(landmarks) == 0:
continue
if i == 0:
f5p = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)]
elif i == 1:
f5p = [[w-1-landmarks[0][j+5], landmarks[0][j]] for j in range(5)]
elif i == 2:
f5p = [[w-1-landmarks[0][j], h-1-landmarks[0][j+5]] for j in range(5)]
elif i == 3:
f5p = [[landmarks[0][j + 5], h-1-landmarks[0][j]] for j in range(5)]
candi.append((box[0][4], f5p))
if len(candi) == 0:
return None if not return_trans_inv else (None, None)
while len(candi) > 1:
if candi[0][0] > candi[1][0]:
del candi[1]
else:
del candi[0]
facial5points = candi[0][1]
warped_face = warp_and_crop_face(np.array(ori_size), facial5points, self.refrence, crop_size=crop_size,
return_trans_inv=return_trans_inv)
if return_trans_inv:
return Image.fromarray(warped_face[0]), warped_face[1]
else:
return Image.fromarray(warped_face)
def align_multi(self, img, limit=None, min_face_size=64.0, crop_size=(112, 112)):
boxes, landmarks = self.detect_faces(img, min_face_size)
if len(landmarks) == 0:
return None
if limit:
boxes = boxes[:limit]
landmarks = landmarks[:limit]
faces = []
for landmark in landmarks:
facial5points = [[landmark[j],landmark[j+5]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=crop_size)
faces.append(Image.fromarray(warped_face))
# return boxes, faces
return faces
def get_landmarks(self, img, min_face_size=32, crop_size=(256, 256), fast_mode=False, ori=[0,1,3]):
ori_size = img.copy()
h = img.size[1]
w = img.size[0]
sw = 640. if fast_mode else w
scale = sw / w
img = img.resize((int(w*scale), int(h*scale)))
min_face_size = min_face_size if not fast_mode else sw/20
candi = []
boxes = np.zeros([0, 5])
for i in ori:
if i > 0:
rimg = img.transpose(i+1)
else:
rimg = img
box, landmarks = self.detect_faces(rimg, min_face_size=min_face_size, thresholds=[0.6, 0.7, 0.7])
landmarks /= scale
if len(landmarks) == 0:
continue
if i == 0:
f5p = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)]
elif i == 1:
f5p = [[w-1-landmarks[0][j+5], landmarks[0][j]] for j in range(5)]
x1 = w-1-box[:, 1]
y1 = box[:, 0]
x2 = w-1-box[:, 3]
y2 = box[:, 2]
box[:, :4] = np.stack((x2, y1, x1, y2), axis=1)
elif i == 2:
f5p = [[w-1-landmarks[0][j], h-1-landmarks[0][j+5]] for j in range(5)]
x1 = w-1-box[:, 0]
y1 = h-1-box[:, 1]
x2 = w-1-box[:, 2]
y2 = h-1-box[:, 3]
box[:, :4] = np.stack((x2, y2, x1, y1), axis=1)
elif i == 3:
f5p = [[landmarks[0][j + 5], h-1-landmarks[0][j]] for j in range(5)]
x1 = box[:, 1]
y1 = h-1-box[:, 0]
x2 = box[:, 3]
y2 = h-1-box[:, 2]
box[:, :4] = np.stack((x1, y2, x2, y1), axis=1)
candi.append(f5p)
boxes = np.concatenate((boxes, box), axis=0)
# pick = nms(boxes)
faces = []
for idx, facial5points in enumerate(candi):
# if idx not in pick:
# continue
warped_face = warp_and_crop_face(np.array(ori_size), facial5points, self.refrence, crop_size=crop_size,
return_trans_inv=False)
faces.append((warped_face, facial5points))
return faces
def detect_faces(self, image, min_face_size=64.0,
thresholds=[0.6, 0.7, 0.8],
nms_thresholds=[0.7, 0.7, 0.7]):
"""
Arguments:
image: an instance of PIL.Image.
min_face_size: a float number.
thresholds: a list of length 3.
nms_thresholds: a list of length 3.
Returns:
two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
bounding boxes and facial landmarks.
"""
# BUILD AN IMAGE PYRAMID
width, height = image.size
min_length = min(height, width)
min_detection_size = 12
factor = 0.707 # sqrt(0.5)
# scales for scaling the image
scales = []
# scales the image so that
# minimum size that we can detect equals to
# minimum face size that we want to detect
m = min_detection_size/min_face_size
min_length *= m
factor_count = 0
while min_length > min_detection_size:
scales.append(m*factor**factor_count)
min_length *= factor
factor_count += 1
# STAGE 1
# it will be returned
bounding_boxes = []
with torch.no_grad():
# run P-Net on different scales
for s in scales:
boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0])
bounding_boxes.append(boxes)
# collect boxes (and offsets, and scores) from different scales
bounding_boxes = [i for i in bounding_boxes if i is not None]
if len(bounding_boxes) == 0:
return np.zeros([0]), np.zeros([0])
bounding_boxes = np.vstack(bounding_boxes)
keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
bounding_boxes = bounding_boxes[keep]
# use offsets predicted by pnet to transform bounding boxes
bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
# shape [n_boxes, 5]
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 2
img_boxes = get_image_boxes(bounding_boxes, image, size=24)
img_boxes = torch.FloatTensor(img_boxes).to(device)
output = self.rnet(img_boxes)
offsets = output[0].cpu().data.numpy() # shape [n_boxes, 4]
probs = output[1].cpu().data.numpy() # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[1])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
offsets = offsets[keep]
keep = nms(bounding_boxes, nms_thresholds[1])
bounding_boxes = bounding_boxes[keep]
bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 3
img_boxes = get_image_boxes(bounding_boxes, image, size=48)
if len(img_boxes) == 0:
return np.zeros([0]), np.zeros([0])
img_boxes = torch.FloatTensor(img_boxes).to(device)
output = self.onet(img_boxes)
landmarks = output[0].cpu().data.numpy() # shape [n_boxes, 10]
offsets = output[1].cpu().data.numpy() # shape [n_boxes, 4]
probs = output[2].cpu().data.numpy() # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[2])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
offsets = offsets[keep]
landmarks = landmarks[keep]
# compute landmark points
width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1)*landmarks[:, 0:5]
landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1)*landmarks[:, 5:10]
bounding_boxes = calibrate_box(bounding_boxes, offsets)
keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
bounding_boxes = bounding_boxes[keep]
landmarks = landmarks[keep]
return bounding_boxes, landmarks