-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathx_squared_keras.py
52 lines (38 loc) · 1.47 KB
/
x_squared_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras import regularizers
import matplotlib.pyplot as plt
from image_generator import create_frame
from main import generated_x_squared_data
def train_keras_model(x, y):
model = Sequential()
model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.001), input_shape=(1,)))
model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.001)))
model.add(Dense(1))
model.compile(optimizer=Adam(), loss='mse')
# fit the model, keeping 2,000 samples as validation set
hist = model.fit(x, y,
validation_split=0.2,
epochs=15000,
batch_size=256)
model.save(f"Regressor_model")
return model
def main():
low = -50
high = 50
# x, y = generated_x_squared_data(low, high, 10000)
# model = train_keras_model(x, y)
model = keras.models.load_model("Regressor_model")
x_test, y_test = generated_x_squared_data(-70, 70, 10000)
y_pred = model.predict(x_test)
create_frame(0, x_test, y_test, y_pred, low, high, 15000, out_file="x_squared_keras.png")
def test():
model = keras.models.load_model("Regressor_model")
x_in = np.array([50, 60, 70, 100, 1000, 100000])
y_out = model.predict(x_in)
grads = np.diag((y_out - y_out[0])[1:] / (x_in - x_in[0])[1:])
if __name__ == "__main__":
main()