-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
552 lines (473 loc) · 28 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import os
from tkinter import FALSE
os.environ["CUDA_VISIBLE_DEVICES"]="7"
import torch
from transformers import RobertaTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
import argparse
from tqdm import tqdm
import torch.nn.functional as F
from sklearn.metrics import f1_score
from sklearn.metrics import confusion_matrix
from model import *
from data import *
from generate import *
tokenizer = RobertaTokenizer.from_pretrained('/shared/data2/jiaxinh3/Typing/pre-trained')
bz_list = [8]
lr_list = [1e-1, 5e-2, 2e-2, 1e-2, 5e-3]
lambd_list = [1e-7]#, 1e-5, 1e-4, 1e-3]
def print_sample(train_sent, sent_label, sub_label_ids, logits, node_id_list):
# train_sent batch x seq_len
# sent_label batch x seq_len
# score batch x 1 x vocab_size
printed_False = False
printed_True = False
for i in range(len(train_sent)):
true_label = node_id_list[sub_label_ids[i]].item()
pred_label = node_id_list[torch.argmax(logits[i][0])].item()
if printed_True and printed_False:
break
if printed_True and ( pred_label == true_label ):
continue
if printed_False and ( pred_label != true_label ):
continue
if pred_label == true_label:
printed_True = True
else:
printed_False = True
sub_score = logits[i][0].softmax(dim=-1) # vocab_size
values, predictions = sub_score.topk(5)
orig_text = tokenizer.decode(train_sent[i]).split('</s>')[0]
label_name = tokenizer.decode(sent_label[i]).split('</s>')[0]
print(f"Text: {orig_text}")
print(f"Label: {label_name}")
for i, (v, p) in enumerate(zip(values.tolist(), predictions.tolist())):
p0 = node_id_list[p]
print({"score": v, "token": p, "token_str": tokenizer.decode(p0)})
def add_keywords(node_id_list, keywords_list):
x = model.label_project.weight.data.cpu().numpy()
if keywords_list == []:
keywords_list = [[] for node in node_id_list]
l = len(keywords_list[0])
all_keywords = []
for i in range(len(keywords_list)):
all_keywords.extend(keywords_list[i])
for i in range(len(node_id_list)):
ind = np.argsort(-x[i])[:l+1]
for j in range(l+1):
if ind[j] not in all_keywords:
keywords_list[i].append(ind[j])
all_keywords.append(ind[j])
break
for i in range(len(keywords_list)):
keywords = ' '.join([tokenizer.decode(w) for w in keywords_list[i]])
print(tokenizer.decode(node_id_list[i])+': '+keywords)
return keywords_list
def cal_disc_loss(node_id_list, keywords_list):
x = model.label_project.weight.data.cpu().numpy()
all_keywords = []
keyword_class = []
for i in range(len(keywords_list)):
all_keywords.extend(keywords_list[i])
keyword_class.extend([i for j in keywords_list[i]])
keyword_class = torch.tensor(keyword_class).to(device)
all_keywords = torch.tensor(all_keywords).to(device)
all_keywords = all_keywords.view(-1).repeat(len(node_id_list), 1)
score = torch.gather(model.label_project.weight, 1, all_keywords).T
loss_fct = CrossEntropyLoss()
disc_loss = loss_fct(score, keyword_class)
return disc_loss
def inclusive_loss(node_id_list, keywords_list, r_list):
x = model.label_project.weight.data.cpu().numpy()
inc_loss = 0
for c, p in r_list:
inc_loss += 1 - F.cosine_similarity(model.label_project.weight[c], model.label_project.weight[p], dim = 0)
return inc_loss
def exclusive_loss(node_id_list, keywords_list, r_list):
x = model.label_project.weight.data.cpu().numpy()
exc_loss = 0
for c1, p1 in r_list:
for c2, p2 in r_list:
if p1 == p2 and c1 != c2:
exc_loss += F.cosine_similarity(model.label_project.weight[c1], model.label_project.weight[c2], dim = 0)/2/len(node_id_list)
return exc_loss
def match_results(logits, sub_test_mask, sub_label_ids, node_id_list,
total_pred, total_gold, total_crct):
# masked_label = torch.gather(sub_test_label, 1, sub_test_mask) #masked_label[i][0]
if word2label is not None:
word_ids = torch.tensor(list(word2label.keys())).to(device)
# logits.shape: batch x 1 x vocab_size
for i in range(len(logits)):
true_label = node_id_list[sub_label_ids[i]].item()
total_crct.append(true_label)
pred_label = node_id_list[torch.argmax(logits[i][0])].item()
total_pred.append(pred_label)
return total_pred, total_gold, total_crct
def loose_f1_score(total_crct, total_pred, reverse_train_types):
new_total_crct = [reverse_train_types[x] if x in reverse_train_types else [] for x in total_crct]
new_total_pred = [reverse_train_types[x] if x in reverse_train_types else [] for x in total_pred]
loose_micro_pred, loose_micro_crct, loose_micro_gold = 0.0, 0.0, 0.0
loose_macro_p, loose_macro_r = 0.0, 0.0
for i in range(len(new_total_crct)):
intersection = [x for x in new_total_crct[i] if x in new_total_pred[i]]
if len(new_total_pred[i]) > 0:
loose_macro_p += len(intersection) / len(new_total_pred[i])
loose_macro_r += len(intersection) / len(new_total_crct[i])
loose_micro_pred += len(new_total_pred[i])
loose_micro_crct += len(intersection)
loose_micro_gold += len(new_total_crct[i])
loose_micro_p = loose_micro_crct / loose_micro_pred
loose_micro_r = loose_micro_crct / loose_micro_gold
loose_micro_f1 = 2 * loose_micro_p * loose_micro_r/ (loose_micro_p + loose_micro_r)
loose_macro_f1 = 2 * loose_macro_p * loose_macro_r/ (loose_macro_p + loose_macro_r) / len(new_total_crct)
return loose_micro_f1, loose_macro_f1
def train_func(epoch, N_EPOCHS, pos_data, neg_data, random_iter, batch_size, word2label, neg_sample=0,\
fix_encoder=False, lambd=1, project=False, keywords_list=[], add_new_instance=False, \
sample_num=3, temporal_ensemble=False, ensem_score=None, momentum=0.6, temp_ensem_weight=10, dataset_name="fewnerd", \
unmasker_new_model = True):
epoch_loss = 0
train_pos_loss = 0
train_neg_loss = 0
total_pred, total_gold, total_crct = [], [], []
new_train_sent, new_sent_att, new_sent_mask, new_sent_id = [], [], [], []
new_ensem_scores = []
training_ratio = epoch / N_EPOCHS
train_sent, sent_att, sent_mask, sent_label, label_ids, node_id_list, reverse_train_types,\
new_instances, r_list, entity_list = pos_data
if neg_data is not None:
neg_sent, neg_att, neg_mask, neg_label = neg_data
if add_new_instance:
model.eval()
new_instance_dict = defaultdict(dict)
predict_batch_size = 128
step_num = int((len(train_sent) - 1) / predict_batch_size) + 1
print(f'There are {step_num} batches for instance generation.')
current_model_save_directory = os.path.join('save', dataset_name, 'epoch_'+str(epoch))
if unmasker_new_model:
model.save_pretrained(current_model_save_directory)
tokenizer = RobertaTokenizer.from_pretrained('/shared/data2/jiaxinh3/Typing/pre-trained')
tokenizer.save_pretrained(current_model_save_directory)
unmasker = pipeline('fill-mask', model=current_model_save_directory, device=0)
else:
unmasker = pipeline('fill-mask', model='/shared/data2/jiaxinh3/Typing/pre-trained', device=0)
tokenizer = RobertaTokenizer.from_pretrained('/shared/data2/jiaxinh3/Typing/pre-trained')
for i in range(step_num):
it = list(range(i * predict_batch_size, min((i+1) * predict_batch_size, len(train_sent) )))
if len(it) == 0:
continue
sub_train_sent, sub_sent_att, sub_sent_mask, sub_sent_label, sub_label_ids = \
train_sent[it], sent_att[it], sent_mask[it], sent_label[it], label_ids[it]
sub_train_sent, sub_sent_att, sub_sent_mask, sub_sent_label, sub_label_ids = \
sub_train_sent.to(device), sub_sent_att.to(device), sub_sent_mask.to(device),\
sub_sent_label.to(device), sub_label_ids.to(device)
type_score = model.predict(input_ids=sub_train_sent, masked_ids=sub_sent_mask,
attention_mask=sub_sent_att)
new_instance_dict, instance_data = generate_new_instance(unmasker,tokenizer, new_instance_dict, \
entity_list, it, type_score, node_id_list, sample_num=sample_num)
new_train_sent.append(instance_data[0])
new_sent_att.append(instance_data[1])
new_sent_mask.append(instance_data[2])
new_sent_id.append(instance_data[3])
new_train_sent = torch.cat(new_train_sent, dim=0)
new_sent_att = torch.cat(new_sent_att, dim=0)
new_sent_mask = torch.cat(new_sent_mask, dim=0)
new_sent_id = torch.cat(new_sent_id, dim=0)
if unmasker_new_model:
torch.save(new_train_sent, os.path.join('results', dataset_name, 'generated_train_sent1.pt'))
torch.save(new_sent_att, os.path.join('results', dataset_name, 'generated_sent_att1.pt'))
torch.save(new_sent_mask, os.path.join('results', dataset_name, 'generated_sent_mask1.pt'))
torch.save(new_sent_id, os.path.join('results', dataset_name, 'generated_sent_id1.pt'))
else:
torch.save(new_train_sent, os.path.join('results', dataset_name, 'generated_train_sent.pt'))
torch.save(new_sent_att, os.path.join('results', dataset_name, 'generated_sent_att.pt'))
torch.save(new_sent_mask, os.path.join('results', dataset_name, 'generated_sent_mask.pt'))
torch.save(new_sent_id, os.path.join('results', dataset_name, 'generated_sent_id.pt'))
with open(os.path.join('results', dataset_name, f'new_instances_epoch{epoch}_update{unmasker_new_model}.txt'), 'w') as fout:
for ent_type in new_instance_dict:
fout.write(ent_type+'\n')
for ent_name in new_instance_dict[ent_type]:
fout.write(ent_name+'\t')
new_inst = new_instance_dict[ent_type][ent_name]
fout.write(' '.join(new_inst))
fout.write('\n')
fout.write('\n')
fout.write('\n')
if epoch > int(N_EPOCHS / 2):
if unmasker_new_model:
new_train_sent = torch.load(os.path.join('results', dataset_name, 'generated_train_sent1.pt'))
new_sent_att = torch.load(os.path.join('results', dataset_name, 'generated_sent_att1.pt'))
new_sent_mask = torch.load(os.path.join('results', dataset_name, 'generated_sent_mask1.pt'))
new_sent_id = torch.load(os.path.join('results', dataset_name, 'generated_sent_id1.pt'))
else:
new_train_sent = torch.load(os.path.join('results', dataset_name, 'generated_train_sent.pt'))
new_sent_att = torch.load(os.path.join('results', dataset_name, 'generated_sent_att.pt'))
new_sent_mask = torch.load(os.path.join('results', dataset_name, 'generated_sent_mask.pt'))
new_sent_id = torch.load(os.path.join('results', dataset_name, 'generated_sent_id.pt'))
if temporal_ensemble and epoch > 0:
model.eval()
predict_batch_size = 128
step_num = int((len(train_sent) - 1) / predict_batch_size) + 1
with torch.no_grad():
for i in range(step_num):
it = list(range(i * predict_batch_size, min((i+1) * predict_batch_size, len(train_sent) )))
sub_train_sent, sub_sent_att, sub_sent_mask, sub_sent_label, sub_label_ids = \
train_sent[it], sent_att[it], sent_mask[it], sent_label[it], label_ids[it]
sub_train_sent, sub_sent_att, sub_sent_mask, sub_sent_label, sub_label_ids = \
sub_train_sent.to(device), sub_sent_att.to(device), sub_sent_mask.to(device),\
sub_sent_label.to(device), sub_label_ids.to(device)
tmp_output = model(input_ids=sub_train_sent, masked_ids=sub_sent_mask, \
attention_mask=sub_sent_att, labels=sub_label_ids, relevant_labels=node_id_list,\
neg_sample=neg_sample, fix_encoder=fix_encoder, lambd=lambd, project=project)
last_epoch_score = tmp_output.logits.view(-1, len(node_id_list))
if epoch == 1:
ensem_score.append((1-momentum) * last_epoch_score)
new_ensem_score = ensem_score[-1] / (1 - momentum ** epoch)
else:
ensem_score[it] = (1-momentum)* last_epoch_score + momentum * ensem_score[it]
new_ensem_score = ensem_score[it] / (1 - momentum ** epoch)
new_ensem_scores.append(new_ensem_score)
new_ensem_scores = torch.cat(new_ensem_scores, dim=0)
if epoch == 1:
ensem_score = torch.cat(ensem_score, dim=0)
model.train()
node_id_list = node_id_list.to(device)
step_num = int((len(random_iter) - 1) / batch_size) + 1
if epoch >= int(N_EPOCHS / 2):
random_iter_new = np.arange(len(new_train_sent))
# print(f"generated data length {len(random_iter_new)}")
np.random.shuffle(random_iter_new)
# print(f"original data length {len(random_iter)}")
for i in tqdm(range(step_num), desc="training steps"):
it = random_iter[i * batch_size : min((i+1) * batch_size, len(random_iter) )]
# print(f"training on original data {len(it)}")
optimizer.zero_grad()
sub_train_sent, sub_sent_att, sub_sent_mask, sub_sent_label, sub_label_ids = \
train_sent[it], sent_att[it], sent_mask[it], sent_label[it], label_ids[it]
sub_train_sent, sub_sent_att, sub_sent_mask, sub_sent_label, sub_label_ids = \
sub_train_sent.to(device), sub_sent_att.to(device), sub_sent_mask.to(device),\
sub_sent_label.to(device), sub_label_ids.to(device)
pos_output = model(input_ids=sub_train_sent, masked_ids=sub_sent_mask,
attention_mask=sub_sent_att, labels=sub_label_ids, relevant_labels=node_id_list,\
neg_sample=neg_sample, fix_encoder=fix_encoder, lambd=lambd, project=project)
pos_loss = pos_output.loss
loss = pos_loss
if temporal_ensemble and epoch > 0:
temp_ensem_label = new_ensem_scores[it].to(device)
temp_ensem_output = model(input_ids=sub_train_sent, masked_ids=sub_sent_mask, \
attention_mask=sub_sent_att, labels=temp_ensem_label, relevant_labels=node_id_list,\
neg_sample=neg_sample, fix_encoder=fix_encoder, lambd=lambd, project=project)
temp_ensem_loss = temp_ensem_output.loss
ramp_up = torch.exp(-5*(1-torch.tensor(training_ratio))**2)
loss += temp_ensem_weight * ramp_up * temp_ensem_loss
if epoch >= int(N_EPOCHS / 2):
new_it = random_iter_new[i * batch_size * sample_num : min((i+1) * batch_size * sample_num, len(new_train_sent) )]
# print(f"training on generated data {len(new_it)}")
if len(new_it) > 0:
sub_train_sent1, sub_sent_att1, sub_sent_mask1, sub_label_ids1 = \
new_train_sent[new_it], new_sent_att[new_it], new_sent_mask[new_it], new_sent_id[new_it]
sub_train_sent1, sub_sent_att1, sub_sent_mask1, sub_label_ids1 = \
sub_train_sent1.to(device), sub_sent_att1.to(device), sub_sent_mask1.to(device),\
sub_label_ids1.to(device)
new_instance_output = model(input_ids=sub_train_sent1, masked_ids=sub_sent_mask1,
attention_mask=sub_sent_att1, labels=sub_label_ids1, relevant_labels=node_id_list,\
neg_sample=neg_sample, fix_encoder=fix_encoder, lambd=lambd, project=project)
new_instance_loss = new_instance_output.loss
loss += new_instance_loss/2/sample_num
loss.backward()
epoch_loss += loss.item()
train_pos_loss += pos_loss.item()
if keywords_list != []:
disc_loss = cal_disc_loss(node_id_list, keywords_list)
inc_loss = inclusive_loss(node_id_list, keywords_list, r_list)
exc_loss = exclusive_loss(node_id_list, keywords_list, r_list)
disc_loss.backward()
epoch_loss += disc_loss.item()+ inc_loss.item() + exc_loss.item()
optimizer.step()
scheduler.step()
total_pred, total_gold, total_crct = match_results(
pos_output.logits, sub_sent_mask, sub_label_ids, node_id_list,
total_pred, total_gold, total_crct)
# if i % 5 == 0:
# print_sample(sub_train_sent, sub_sent_label, pos_output.logits, node_id_list)
if project:
keywords_list = add_keywords(node_id_list, keywords_list)
acc = f1_score(total_crct, total_pred, average='micro')
train_micro_f1, train_macro_f1 = loose_f1_score(total_crct, total_pred, reverse_train_types)
return epoch_loss / len(random_iter), acc, train_macro_f1, train_micro_f1, \
total_crct, total_pred, keywords_list, ensem_score
def test_func(pos_data, batch_size, word2label, project=False, epoch=0, shuffle=None):
model.eval()
epoch_loss = 0
val_loss = 0
total_pred, total_gold, total_crct = [], [], []
test_sent, test_att, test_mask, test_label, label_ids, node_id_list, reverse_train_types,\
new_instances, r_list, entity_list = pos_data
node_id_list = node_id_list.to(device)
total_step = int((len(test_sent) - 1) / batch_size) + 1
if epoch == None:
begin_step = 0
end_step = total_step
test_len = len(test_sent)
else:
begin_step = epoch * 20
end_step = (epoch + 1) * 20
test_len = 20 * batch_size
for i in tqdm(range(begin_step, end_step), desc="testing steps"):
slice_step = i % total_step
if shuffle is not None:
it = shuffle[slice_step * batch_size : min((slice_step+1) * batch_size, len(test_sent))]
else:
it = list(range(slice_step * batch_size, min((slice_step+1) * batch_size, len(test_sent) )))
# print(it)
sub_test_sent, sub_test_att, sub_test_mask, sub_test_label, sub_label_ids = \
test_sent[it], test_att[it], test_mask[it], test_label[it], label_ids[it]
sub_test_sent, sub_test_att, sub_test_mask, sub_test_label, sub_label_ids = \
sub_test_sent.to(device), sub_test_att.to(device), sub_test_mask.to(device), \
sub_test_label.to(device), sub_label_ids.to(device)
with torch.no_grad():
output = model(input_ids=sub_test_sent, masked_ids=sub_test_mask,
attention_mask=sub_test_att, labels=sub_label_ids, \
relevant_labels=node_id_list, project=project)
loss = output.loss
val_loss += loss.item()
total_pred, total_gold, total_crct = match_results(
output.logits, sub_test_mask, sub_label_ids, node_id_list,
total_pred, total_gold, total_crct)
# if i % 5 == 0:
# print_sample(sub_test_sent, sub_test_label, sub_label_ids, output.logits, node_id_list)
acc = f1_score(total_crct, total_pred, average='micro')
test_micro_f1, test_macro_f1= loose_f1_score(total_crct, total_pred, reverse_train_types)
return val_loss / test_len, acc, test_macro_f1, test_micro_f1, total_crct, total_pred
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='main',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', default='fewnerd')
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--lr', default=1e-2,type=float)
parser.add_argument('--epochs', default=20,type=int)
parser.add_argument('--lambd', default=1e-7,type=float)
parser.add_argument('--sample_num', default=3,type=int)
parser.add_argument('--add_new_inst', default=0,type=int)
parser.add_argument('--momentum', default=0.6,type=float)
parser.add_argument('--temp_ensem_weight', default=1.0,type=float)
parser.add_argument('--unmasker_new_model', default=1, type=int)
parser.add_argument('--save_res', type=str)
args = parser.parse_args()
print(args)
BATCH_SIZE = args.batch_size
N_EPOCHS = args.epochs
lr = args.lr
lambd = args.lambd
sample_num = args.sample_num
momentum = args.momentum
temp_ensem_weight = args.temp_ensem_weight
dataset = args.dataset
save_res=args.save_res
if args.add_new_inst > 0:
add_new_inst = True
else:
add_new_inst = False
if args.unmasker_new_model > 0:
unmasker_new_model = True
else:
unmasker_new_model = False
project = True
with open(os.path.join('results', dataset, save_res), 'a') as fout:
fout.write(f'args: {args}\n')
train_acc_average = 0
train_micro_f1_average = 0
train_macro_f1_average = 0
test_acc_average = 0
test_micro_f1_average = 0
test_macro_f1_average = 0
for i in range(6, 20):
# train_file = os.path.join('data', dataset, dataset+'_train_few_shot_5_'+str(i)+'.json')
train_file = os.path.join('data', dataset, dataset+'_train_new_few_shot_5_'+str(i)+'.json')
# train_file = os.path.join('data', dataset, 'supervised.json')
test_file = os.path.join('data', dataset, dataset+'_test_new_5_'+str(i)+'.json')
# test_file = os.path.join('data', dataset, dataset+'_test.json')
new_hier = dataset+'_hier.txt'
old_hier = os.path.join('data', 'ontology', dataset+'_types.txt')
# old_hier = os.path.join('data', 'ontology', dataset+'_types_old.txt')
# train_type_count = read_types(test_file)
train_type_count_1 = read_types(train_file)
train_type_count_2 = read_types(test_file)
train_type_count = [value for value in train_type_count_1 if value in train_type_count_2]
pos_data = read_file_and_hier(train_file, new_hier, old_hier, train_type_count, use_node_list=True,\
extract_new_instance=False)
word2label = None
node_id_list = pos_data[5]
print(len(train_type_count))
print(f"Positive samples: {len(pos_data[0])}")
new_instances = pos_data[7]
test_data = read_file_and_hier(test_file, new_hier, old_hier, train_type_count, use_node_list=True)
for j in range(1):
model = PromptNER.from_pretrained('/shared/data2/jiaxinh3/Typing/pre-trained', label_num=len(node_id_list))
model.init_project(node_id_list, output_num=len(node_id_list), new_instances=new_instances)
device = torch.device("cuda")
model.to(device)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer
if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer
if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
num_training_steps = N_EPOCHS * len(pos_data[0]) / BATCH_SIZE
num_warmup_steps = int(0.1 * num_training_steps)
print(f"num training steps: {num_training_steps}")
print(f"num warmup steps: {num_warmup_steps}")
optimizer = AdamW(optimizer_grouped_parameters, lr=lr, correct_bias=True)
# optimizer = Adam(optimizer_grouped_parameters, lr=args.lr, betas=(0.9,0.98), eps=1e-6)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)
keywords_list = []
ensem_score = []
import time
start_time = time.time()
for epoch in range(N_EPOCHS):
random_iter = np.arange(len(pos_data[0]))
random_iter_eval = np.arange(len(test_data[0]))
np.random.shuffle(random_iter)
np.random.shuffle(random_iter_eval)
print(len(random_iter_eval))
if epoch != int(N_EPOCHS / 2):
train_loss, train_acc, train_macro_f1, train_micro_f1, train_pos_loss, train_neg_loss, keywords_list,\
ensem_score = train_func(epoch, N_EPOCHS, pos_data, None, \
random_iter, BATCH_SIZE, word2label=None, fix_encoder = False, lambd = lambd, project=project,\
keywords_list = keywords_list, add_new_instance=False, sample_num=sample_num, temporal_ensemble=False, ensem_score=ensem_score,\
momentum=0.5, temp_ensem_weight=1, dataset_name=dataset, unmasker_new_model=unmasker_new_model)
test_loss, test_acc, test_macro_f1, test_micro_f1, total_crct, total_pred = test_func(\
test_data, 128, word2label=None, project=project, epoch=epoch, shuffle=random_iter_eval)
else:
train_loss, train_acc, train_macro_f1, train_micro_f1, train_pos_loss, train_neg_loss, keywords_list,\
ensem_score = train_func(epoch, N_EPOCHS, pos_data, None, \
random_iter, BATCH_SIZE, word2label=None, fix_encoder = False, lambd = lambd, project=project,\
keywords_list = keywords_list, add_new_instance=True, sample_num=sample_num, \
temporal_ensemble=False, ensem_score=ensem_score, momentum=0.5, temp_ensem_weight=1, dataset_name=dataset, \
unmasker_new_model=unmasker_new_model)
test_loss, test_acc, test_macro_f1, test_micro_f1, total_crct, total_pred = test_func(\
test_data, 128, word2label=None, project=project, epoch=epoch, shuffle=random_iter_eval)
print(f'Loss: {train_loss:.4f}(train)\t|\tAcc: {train_acc*100:.2f}\t|\tMicro-F1: {train_micro_f1 * 100:.2f}\t|\tMacro-F1: {train_macro_f1 * 100:.2f}')
print(f'Loss: {test_loss:.4f}(test)\t|\tAcc: {test_acc*100:.2f}\t|\tMicro-F1: {test_micro_f1 * 100:.2f}\t|\tMacro-F1: {test_macro_f1 * 100:.2f}')
# torch.save(model.module, model_name+str(epoch + 1)+'.pt')
secs = int(time.time() - start_time)
mins = int(secs / 60)
secs = secs % 60
print('-----------Epoch: %d' %(epoch + 1), " | time in %d minutes, %d seconds" %(mins, secs))
train_acc_average += train_acc
train_micro_f1_average += train_micro_f1
train_macro_f1_average += train_macro_f1
test_loss, test_acc, test_macro_f1, test_micro_f1, total_crct, total_pred = test_func(\
test_data, 128, word2label=None, project=project, epoch=None, shuffle=None)
print(f'Final Test Loss: {test_loss:.4f}(test)\t|\tAcc: {test_acc*100:.2f}\t|\tMicro-F1: {test_micro_f1 * 100:.2f}\t|\tMacro-F1: {test_macro_f1 * 100:.2f}')
test_acc_average += test_acc
test_micro_f1_average += test_micro_f1
test_macro_f1_average += test_macro_f1
fout.write(f"dataset {i} Train:\t{train_acc_average * 100:.2f}\t{train_micro_f1_average * 100:.2f}\t{train_macro_f1_average * 100:.2f}\tTest:\t{test_acc_average * 100:.2f}\t{test_micro_f1_average * 100:.2f}\t{test_macro_f1_average * 100:.2f}\n")
train_acc_average /= 18
train_micro_f1_average /= 18
train_macro_f1_average /= 18
test_acc_average /= 18
test_micro_f1_average /= 18
test_macro_f1_average /= 18
fout.write(f"Average Train:\t{train_acc_average * 100:.2f}\t{train_micro_f1_average * 100:.2f}\t{train_macro_f1_average * 100:.2f}\tTest:\t{test_acc_average * 100:.2f}\t{test_micro_f1_average * 100:.2f}\t{test_macro_f1_average * 100:.2f}\n")