-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmat3.go
608 lines (535 loc) · 11.5 KB
/
mat3.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
package glmatrix
import (
"fmt"
"math"
)
// NewMat3 creates a new identity mat3
func NewMat3() []float64 {
return []float64{
1, 0, 0,
0, 1, 0,
0, 0, 1,
}
}
// Mat3Create creates a new identity mat3
func Mat3Create() []float64 {
return NewMat3()
}
// Mat3FromMat4 copies the upper-left 3x3 values into the given mat3.
func Mat3FromMat4(out, a []float64) []float64 {
out[0] = a[0]
out[1] = a[1]
out[2] = a[2]
out[3] = a[4]
out[4] = a[5]
out[5] = a[6]
out[6] = a[8]
out[7] = a[9]
out[8] = a[10]
return out
}
// Mat3Clone creates a new mat3 initialized with values from an existing matrix
func Mat3Clone(a []float64) []float64 {
return []float64{
a[0], a[1], a[2],
a[3], a[4], a[5],
a[6], a[7], a[8],
}
}
// Mat3Copy copy the values from one mat3 to another
func Mat3Copy(out, a []float64) []float64 {
out[0] = a[0]
out[1] = a[1]
out[2] = a[2]
out[3] = a[3]
out[4] = a[4]
out[5] = a[5]
out[6] = a[6]
out[7] = a[7]
out[8] = a[8]
return out
}
// Mat3FromValues create a new mat3 with the given values
func Mat3FromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22 float64) []float64 {
return []float64{
m00, m01, m02,
m10, m11, m12,
m20, m21, m22,
}
}
// Mat3Set set the components of a mat3 to the given values
func Mat3Set(out []float64, m00, m01, m02, m10, m11, m12, m20, m21, m22 float64) []float64 {
out[0] = m00
out[1] = m01
out[2] = m02
out[3] = m10
out[4] = m11
out[5] = m12
out[6] = m20
out[7] = m21
out[8] = m22
return out
}
// Mat3Identity set a mat3 to the identity matrix
func Mat3Identity(out []float64) []float64 {
out[0] = 1
out[1] = 0
out[2] = 0
out[3] = 0
out[4] = 1
out[5] = 0
out[6] = 0
out[7] = 0
out[8] = 1
return out
}
// Mat3Transpose transpose the values of a mat3
func Mat3Transpose(out, a []float64) []float64 {
// If we are transposing ourselves we can skip a few steps but have to cache some values
if &(out[0]) == &(a[0]) {
a01 := a[1]
a02 := a[2]
a12 := a[5]
out[1] = a[3]
out[2] = a[6]
out[3] = a01
out[5] = a[7]
out[6] = a02
out[7] = a12
} else {
out[0] = a[0]
out[1] = a[3]
out[2] = a[6]
out[3] = a[1]
out[4] = a[4]
out[5] = a[7]
out[6] = a[2]
out[7] = a[5]
out[8] = a[8]
}
return out
}
// Mat3Invert inverts a mat3
func Mat3Invert(out, a []float64) []float64 {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a10 := a[3]
a11 := a[4]
a12 := a[5]
a20 := a[6]
a21 := a[7]
a22 := a[8]
b01 := a22*a11 - a12*a21
b11 := -a22*a10 + a12*a20
b21 := a21*a10 - a11*a20
// Calculate the determinant
det := a00*b01 + a01*b11 + a02*b21
if det == 0. {
return nil
}
det = 1.0 / det
out[0] = b01 * det
out[1] = (-a22*a01 + a02*a21) * det
out[2] = (a12*a01 - a02*a11) * det
out[3] = b11 * det
out[4] = (a22*a00 - a02*a20) * det
out[5] = (-a12*a00 + a02*a10) * det
out[6] = b21 * det
out[7] = (-a21*a00 + a01*a20) * det
out[8] = (a11*a00 - a01*a10) * det
return out
}
// Mat3Adjoint calculates the adjugate of a mat3
func Mat3Adjoint(out, a []float64) []float64 {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a10 := a[3]
a11 := a[4]
a12 := a[5]
a20 := a[6]
a21 := a[7]
a22 := a[8]
out[0] = a11*a22 - a12*a21
out[1] = a02*a21 - a01*a22
out[2] = a01*a12 - a02*a11
out[3] = a12*a20 - a10*a22
out[4] = a00*a22 - a02*a20
out[5] = a02*a10 - a00*a12
out[6] = a10*a21 - a11*a20
out[7] = a01*a20 - a00*a21
out[8] = a00*a11 - a01*a10
return out
}
// Mat3Determinant calculates the determinant of a mat3
func Mat3Determinant(a []float64) float64 {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a10 := a[3]
a11 := a[4]
a12 := a[5]
a20 := a[6]
a21 := a[7]
a22 := a[8]
return a00*(a22*a11-a12*a21) +
a01*(-a22*a10+a12*a20) +
a02*(a21*a10-a11*a20)
}
// Mat3Multiply multiplies two mat3's
func Mat3Multiply(out, a, b []float64) []float64 {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a10 := a[3]
a11 := a[4]
a12 := a[5]
a20 := a[6]
a21 := a[7]
a22 := a[8]
b00 := b[0]
b01 := b[1]
b02 := b[2]
b10 := b[3]
b11 := b[4]
b12 := b[5]
b20 := b[6]
b21 := b[7]
b22 := b[8]
out[0] = b00*a00 + b01*a10 + b02*a20
out[1] = b00*a01 + b01*a11 + b02*a21
out[2] = b00*a02 + b01*a12 + b02*a22
out[3] = b10*a00 + b11*a10 + b12*a20
out[4] = b10*a01 + b11*a11 + b12*a21
out[5] = b10*a02 + b11*a12 + b12*a22
out[6] = b20*a00 + b21*a10 + b22*a20
out[7] = b20*a01 + b21*a11 + b22*a21
out[8] = b20*a02 + b21*a12 + b22*a22
return out
}
// Mat3Translate translate a mat3 by the given vector
func Mat3Translate(out, a, v []float64) []float64 {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a10 := a[3]
a11 := a[4]
a12 := a[5]
a20 := a[6]
a21 := a[7]
a22 := a[8]
x := v[0]
y := v[1]
out[0] = a00
out[1] = a01
out[2] = a02
out[3] = a10
out[4] = a11
out[5] = a12
out[6] = x*a00 + y*a10 + a20
out[7] = x*a01 + y*a11 + a21
out[8] = x*a02 + y*a12 + a22
return out
}
// Mat3Rotate rotates a mat3 by the given angle
func Mat3Rotate(out, a []float64, rad float64) []float64 {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a10 := a[3]
a11 := a[4]
a12 := a[5]
a20 := a[6]
a21 := a[7]
a22 := a[8]
s := math.Sin(rad)
c := math.Cos(rad)
out[0] = c*a00 + s*a10
out[1] = c*a01 + s*a11
out[2] = c*a02 + s*a12
out[3] = c*a10 - s*a00
out[4] = c*a11 - s*a01
out[5] = c*a12 - s*a02
out[6] = a20
out[7] = a21
out[8] = a22
return out
}
// Mat3Scale scales the mat3 by the dimensions in the given vec2
func Mat3Scale(out, a, v []float64) []float64 {
x := v[0]
y := v[1]
out[0] = x * a[0]
out[1] = x * a[1]
out[2] = x * a[2]
out[3] = y * a[3]
out[4] = y * a[4]
out[5] = y * a[5]
out[6] = a[6]
out[7] = a[7]
out[8] = a[8]
return out
}
// Mat3FromTranslation creates a matrix from a vector translation
// This is equivalent to (but much faster than):
//
// - Mat3Identity(dest)
// - Mat3Translate(dest, dest, vec)
func Mat3FromTranslation(out, v []float64) []float64 {
out[0] = 1
out[1] = 0
out[2] = 0
out[3] = 0
out[4] = 1
out[5] = 0
out[6] = v[0]
out[7] = v[1]
out[8] = 1
return out
}
// Mat3FromRotation creates a matrix from a given angle
// This is equivalent to (but much faster than):
//
// - Mat3Identity(dest)
// - Mat3Rotate(dest, dest, rad)
func Mat3FromRotation(out []float64, rad float64) []float64 {
s := math.Sin(rad)
c := math.Cos(rad)
out[0] = c
out[1] = s
out[2] = 0
out[3] = -s
out[4] = c
out[5] = 0
out[6] = 0
out[7] = 0
out[8] = 1
return out
}
// Mat3FromScaling creates a matrix from a vector scaling
// This is equivalent to (but much faster than):
//
// - Mat3Identity(dest)
// - Mat3Scale(dest, dest, vec)
func Mat3FromScaling(out, v []float64) []float64 {
out[0] = v[0]
out[1] = 0
out[2] = 0
out[3] = 0
out[4] = v[1]
out[5] = 0
out[6] = 0
out[7] = 0
out[8] = 1
return out
}
// Mat3FromMat2d copies the values from a mat2d into a mat3
func Mat3FromMat2d(out, a []float64) []float64 {
out[0] = a[0]
out[1] = a[1]
out[2] = 0
out[3] = a[2]
out[4] = a[3]
out[5] = 0
out[6] = a[4]
out[7] = a[5]
out[8] = 1
return out
}
// Mat3FromQuat calculates a 3x3 matrix from the given quaternion
func Mat3FromQuat(out, q []float64) []float64 {
x := q[0]
y := q[1]
z := q[2]
w := q[3]
x2 := x + x
y2 := y + y
z2 := z + z
xx := x * x2
yx := y * x2
yy := y * y2
zx := z * x2
zy := z * y2
zz := z * z2
wx := w * x2
wy := w * y2
wz := w * z2
out[0] = 1 - yy - zz
out[3] = yx - wz
out[6] = zx + wy
out[1] = yx + wz
out[4] = 1 - xx - zz
out[7] = zy - wx
out[2] = zx - wy
out[5] = zy + wx
out[8] = 1 - xx - yy
return out
}
// Mat3NormalFromMat4 calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
func Mat3NormalFromMat4(out, a []float64) []float64 {
a00 := a[0]
a01 := a[1]
a02 := a[2]
a03 := a[3]
a10 := a[4]
a11 := a[5]
a12 := a[6]
a13 := a[7]
a20 := a[8]
a21 := a[9]
a22 := a[10]
a23 := a[11]
a30 := a[12]
a31 := a[13]
a32 := a[14]
a33 := a[15]
b00 := a00*a11 - a01*a10
b01 := a00*a12 - a02*a10
b02 := a00*a13 - a03*a10
b03 := a01*a12 - a02*a11
b04 := a01*a13 - a03*a11
b05 := a02*a13 - a03*a12
b06 := a20*a31 - a21*a30
b07 := a20*a32 - a22*a30
b08 := a20*a33 - a23*a30
b09 := a21*a32 - a22*a31
b10 := a21*a33 - a23*a31
b11 := a22*a33 - a23*a32
// Calculate the determinant
det := b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06
if det == 0. {
return nil
}
det = 1.0 / det
out[0] = (a11*b11 - a12*b10 + a13*b09) * det
out[1] = (a12*b08 - a10*b11 - a13*b07) * det
out[2] = (a10*b10 - a11*b08 + a13*b06) * det
out[3] = (a02*b10 - a01*b11 - a03*b09) * det
out[4] = (a00*b11 - a02*b08 + a03*b07) * det
out[5] = (a01*b08 - a00*b10 - a03*b06) * det
out[6] = (a31*b05 - a32*b04 + a33*b03) * det
out[7] = (a32*b02 - a30*b05 - a33*b01) * det
out[8] = (a30*b04 - a31*b02 + a33*b00) * det
return out
}
// Mat3Projection generates a 2D projection matrix with the given bounds
func Mat3Projection(out []float64, width, height float64) []float64 {
out[0] = 2 / width
out[1] = 0
out[2] = 0
out[3] = 0
out[4] = -2 / height
out[5] = 0
out[6] = -1
out[7] = 1
out[8] = 1
return out
}
// Mat3Str returns a string representation of a mat3
func Mat3Str(a []float64) string {
return fmt.Sprintf("mat3(%v, %v, %v, %v, %v, %v, %v, %v, %v)",
a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8])
}
// Mat3Frob returns Frobenius norm of a mat3
func Mat3Frob(a []float64) float64 {
return hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8])
}
// Mat3Add adds two mat3's
func Mat3Add(out, a, b []float64) []float64 {
out[0] = a[0] + b[0]
out[1] = a[1] + b[1]
out[2] = a[2] + b[2]
out[3] = a[3] + b[3]
out[4] = a[4] + b[4]
out[5] = a[5] + b[5]
out[6] = a[6] + b[6]
out[7] = a[7] + b[7]
out[8] = a[8] + b[8]
return out
}
// Mat3Subtract subtracts matrix b from matrix a
func Mat3Subtract(out, a, b []float64) []float64 {
out[0] = a[0] - b[0]
out[1] = a[1] - b[1]
out[2] = a[2] - b[2]
out[3] = a[3] - b[3]
out[4] = a[4] - b[4]
out[5] = a[5] - b[5]
out[6] = a[6] - b[6]
out[7] = a[7] - b[7]
out[8] = a[8] - b[8]
return out
}
// Mat3MultiplyScalar multiply each element of the matrix by a scalar.
func Mat3MultiplyScalar(out, a []float64, b float64) []float64 {
out[0] = a[0] * b
out[1] = a[1] * b
out[2] = a[2] * b
out[3] = a[3] * b
out[4] = a[4] * b
out[5] = a[5] * b
out[6] = a[6] * b
out[7] = a[7] * b
out[8] = a[8] * b
return out
}
// Mat3MultiplyScalarAndAdd adds two mat3's after multiplying each element of the second operand by a scalar value.
func Mat3MultiplyScalarAndAdd(out, a, b []float64, scale float64) []float64 {
out[0] = a[0] + b[0]*scale
out[1] = a[1] + b[1]*scale
out[2] = a[2] + b[2]*scale
out[3] = a[3] + b[3]*scale
out[4] = a[4] + b[4]*scale
out[5] = a[5] + b[5]*scale
out[6] = a[6] + b[6]*scale
out[7] = a[7] + b[7]*scale
out[8] = a[8] + b[8]*scale
return out
}
// Mat3ExactEquals returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
func Mat3ExactEquals(a, b []float64) bool {
return a[0] == b[0] &&
a[1] == b[1] &&
a[2] == b[2] &&
a[3] == b[3] &&
a[4] == b[4] &&
a[5] == b[5] &&
a[6] == b[6] &&
a[7] == b[7] &&
a[8] == b[8]
}
// Mat3Equals returns whether or not the matrices have approximately the same elements in the same position.
func Mat3Equals(a, b []float64) bool {
a0 := a[0]
a1 := a[1]
a2 := a[2]
a3 := a[3]
a4 := a[4]
a5 := a[5]
a6 := a[6]
a7 := a[7]
a8 := a[8]
b0 := b[0]
b1 := b[1]
b2 := b[2]
b3 := b[3]
b4 := b[4]
b5 := b[5]
b6 := b[6]
b7 := b[7]
b8 := b[8]
return equals(a0, b0) &&
equals(a1, b1) &&
equals(a2, b2) &&
equals(a3, b3) &&
equals(a4, b4) &&
equals(a5, b5) &&
equals(a6, b6) &&
equals(a7, b7) &&
equals(a8, b8)
}
// Mat3Mul alias for Mat3Multiply
var Mat3Mul = Mat3Multiply
// Mat3Sub alias for Mat3Subtract
var Mat3Sub = Mat3Subtract