Skip to content

Latest commit

 

History

History
50 lines (46 loc) · 1.52 KB

README.md

File metadata and controls

50 lines (46 loc) · 1.52 KB

ppo-pytorch

PPO in pytorch version.

We run multiple episodes with the same policy, and create an experience replay buffer out of trajectories in these episodes to perform on-policy policy gradient updates using PPO. We clear the replay buffer from the last run before we start another run of multiple episodes.

Set up Python environment

Run

virtualenv -p /usr/bin/python3 ppoenv
source ppoenv/bin/activate
pip install -r requirements.txt

or

virtualenv -p /usr/bin/python3 ppoenv
source ppoenv/bin/activate
pip install gym==0.18.0
pip install torch
pip install tqdm
pip install tensorboard

Train and evaluate agent in RL (cartpole).

source ppoenv/bin/activate
python train.py

Check training progress by running

source ppoenv/bin/activate
tensorboard --logdir results/

After training is complete, find [SAVED_LOG] in results/ (e.g., 20221023_172239). To evaluate without visualization, run

source ppoenv/bin/activate
python eval.py --log [SAVED_LOG]

To evaluate with visualization, run

source ppoenv/bin/activate
python eval.py --log [SAVED_LOG] --visualize

If you want to evaluate on a checkpoint at a specific episode (e.g., 1000), run

source ppoenv/bin/activate
python eval.py --log [SAVED_LOG] --visualize --training_episodes 1000

Credits

Borrowed code from ikostrikov/pytorch-a2c-ppo-acktr-gail, vita-epfl/CrowdNav, and agrimgupta92/sgan.