-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgutenwords-plotzipf.py
executable file
·222 lines (186 loc) · 8.12 KB
/
gutenwords-plotzipf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
"""
Version modeled after
https://www.thepythoncode.com/article/plot-zipfs-law-using-matplotlib-python
but keeping the original data structure
"""
import logging
import re
def title_lines(file, from_line="", to_line=""):
"""
Iterator on file lines (stripped from newlines):
Return title, and words
"""
title = "UNDEFINED"
text = ""
store_line = False if from_line != "" else True
try:
with open(file, mode="r", encoding="latin-1") as f:
for line in f:
# Check if line matches regex "from_line"
if from_line != "" and re.match(from_line, line):
#if line.startswith(to_line):
# the title is what follows "EBOOK"
if "EBOOK" in line:
title = line.split("EBOOK")[1].strip().strip("* ")
store_line = True
elif to_line != "" and re.match(to_line, line):
store_line = False
break
elif store_line:
text += line
# Strip non A-Z characters from title
title = "".join(c for c in title if c.isalpha() or c.isspace()) if title != "UNDEFINED" else os.path.basename(file)
return title, text
except FileNotFoundError:
logging.error("[lines] File %s not found", file)
return "ERROR1", "ERROR"
except Exception as e:
logging.error("[lines] Error reading %s: %s", file, e)
return "ERROR2", "ERROR"
def words(line):
"""
Return words from a line stripping punctuation
"""
for word in line.split():
try:
w = word.strip(".,;:?!()[]_*{}\"'").lower()
# Strip 's and 'll from the end of words
if w.endswith("'s"):
w = w[:-2]
if w.endswith("'ll"):
w = w[:-3]
# Discard hypenated words
if "-" in w:
continue
# Check for digits
if any(c.isdigit() for c in w):
continue
yield w
except AttributeError:
pass
if __name__ == "__main__":
import argparse
args = argparse.ArgumentParser("Analyse the frequency of words in a set of Gutenberg files")
args.add_argument("FILES", help="Input files", nargs="+")
args.add_argument("-o", "--output", help="Plot the top words as png file", required=True)
args.add_argument("-m", "--max", help="Max files to process, 0 for all [default: %(default)s]", type=int, default=1000)
args.add_argument("-p", "--max-plot", help="Max files to plot, 0 for all [default: %(default)s]", type=int, default=20)
args.add_argument("--start", help="Start of the manuscript [default: %(default)s]", default="\*\*\*\s?START OF")
args.add_argument("--end", help="End of the manuscript [default: %(default)s]", default="\*\*\*\s?END OF")
args.add_argument("--verbose", help="Verbose output", action="store_true")
args.add_argument("--debug", help="Debug output", action="store_true")
args = args.parse_args()
# Logger
logFormat = "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
if args.debug:
logging.basicConfig(format=logFormat, level=logging.DEBUG)
elif args.verbose:
logging.basicConfig(format=logFormat, level=logging.INFO)
else:
logging.basicConfig(format=logFormat, level=logging.WARNING)
# Create logger with formatter
logger = logging.getLogger("gutenwords")
if True:
# Imports
import os
from matplotlib import pyplot as plt
import string
import numpy as np
from scipy.interpolate import make_interp_spline
# define some dictionaries
texts = {}
textlengths = {}
textwordamounts = {}
unwantedCharacters = list(string.punctuation)
# How many ranks we'll show
depth = 50
xAxis = [str(number) for number in range(1, depth+1)]
allText = ""
texts["ALL"] = ""
for file in args.FILES:
# Process at most args.max files
if args.max > 0 and len(texts) >= args.max:
break
title, text = title_lines(file, from_line=args.start, to_line=args.end)
if title == "UNDEFINED":
logger.warning("Title not found in %s: skipping", file)
continue
texts[title] = text
allText += " " + text
texts["ALL"] = allText
# Remove duplicates
files_to_process = args.FILES
files_to_process = list(dict.fromkeys(files_to_process))
# Cleaning and counting the Text
done = 0
denominator = int(len(files_to_process) / 15)
denominator = 1 if denominator == 0 else denominator
for text in texts:
done = done + 1
perc = 100 * done / len(files_to_process)
if done == 1 or done % denominator == 0:
logger.info("%d%%: Processing file #%d: %s" % (perc, done, text))
# Remove unwanted characters from the texts
for character in unwantedCharacters:
texts[text] = texts[text].replace(character, '').lower()
#splittedText = texts[text].split(' ')
splittedText = list(words(texts[text]))
# Saving the text length to show in the label of the line later
textlengths[text] = len(splittedText)
# Here will be the amount of occurence of each word stored
textwordamounts[text] = {}
# Loop through all words in the text
for i in splittedText:
# Add to the word at the given position if it already exists
# Else set the amount to one essentially making a new item in the dict
if i in textwordamounts[text].keys():
textwordamounts[text][i] += 1
else:
textwordamounts[text][i] = 1
# Sorting the dict by the values with sorted
# define custom key so the function knows what to use when sorting
textwordamounts[text] = dict(
sorted(
textwordamounts[text ].items(),
key=lambda x: x[1],
reverse=True)[0:depth]
)
# Get the percentage value of a given max value
def percentify(value, max):
return round(value / max * 100)
# Generate smooth curvess
def smoothify(yInput):
x = np.array(range(0, depth))
y = np.array(yInput)
# define x as 600 equally spaced values between the min and max of original x
x_smooth = np.linspace(x.min(), x.max(), 600)
# define spline with degree k=3, which determines the amount of wiggle
spl = make_interp_spline(x, y, k=3)
y_smooth = spl(x_smooth)
# Return the x and y axis
return x_smooth, y_smooth
# Make the perfect Curve
logger.info("Smoothing curve...")
ziffianCurveValues = [100/i for i in range(1, depth+1)]
x, y = smoothify(ziffianCurveValues)
logger.info("Preparing plot")
# Set plot size
plt.figure(figsize=(20, 10))
plt.plot(x, y, label='Ziffian Curve', ls=':', color='grey')
# Plot the texts
# Get the first ten keys of
keys_top = list(textwordamounts.keys())[0:args.max_plot]
keys_top[0] = "ALL" if not "ALL" in keys_top else keys_top[0]
for i in keys_top:
logger.info("Plotting %s" % i)
maxValue = list(textwordamounts[i].values())[0]
yAxis = [percentify(value, maxValue) for value in list(textwordamounts[i].values())]
x, y = smoothify(yAxis)
if i == "ALL":
plt.plot(x, y, label='%s (%d words)' % (i, textlengths[i]), lw=2, color='black')
else:
plt.plot(x, y, label=i+f' [{textlengths[i]}]', lw=1, alpha=0.5)
plt.xticks(range(0, depth), xAxis)
plt.legend()
plt.savefig(args.output, dpi=300)