-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathindex.html
98 lines (68 loc) · 1.93 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>TensorSpace - LeNet Demo</title>
<meta name="author" content="syt123450 / https://github.com/syt123450">
<style>
html, body {
margin: 0;
padding: 0;
width: 100%;
height: 100%;
}
#container {
width: 100%;
height: 100%;
background-color: #000;
}
</style>
</head>
<body>
<div id="container"></div>
<script src="../assets/libs/jquery.min.js"></script>
<script src="../assets/libs/three.min.js"></script>
<script src="../assets/libs/tween.min.js"></script>
<script src="../assets/libs/TrackballControls.js"></script>
<script src="../assets/libs/tf.min.js"></script>
<script src="../assets/libs/tensorspace.min.js"></script>
<script>
let modelContainer = document.getElementById( "container" );
let model = new TSP.models.Sequential( modelContainer );
model.add( new TSP.layers.GreyscaleInput() );
model.add( new TSP.layers.Conv2d() );
model.add( new TSP.layers.Pooling2d() );
model.add( new TSP.layers.Conv2d() );
model.add( new TSP.layers.Pooling2d() );
model.add( new TSP.layers.Dense() );
model.add( new TSP.layers.Dense() );
model.add( new TSP.layers.Output1d( {
outputs: [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ]
} ) );
// Load layer model
// model.load( {
//
// type: "tensorflow",
// url: './convertedModel/layerModel/model.json'
//
// } );
// Load graph model
model.load( {
type: "tensorflow",
url: './convertedModel/graphModel/model.json',
outputsName: ["MyConv2D_1", "MyMaxPooling2D_1", "MyConv2D_2", "MyMaxPooling2D_2", "MyDense_1", "MyDense_2", "MySoftMax"]
} );
model.init(function() {
$.ajax( {
url: "../assets/data/5.json",
type: 'GET',
async: true,
dataType: 'json',
success: function ( data ) {
model.predict( data );
}
} );
});
</script>
</body>
</html>