forked from jlubo/arbor_network_consolidation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotResults.py
177 lines (144 loc) · 8.7 KB
/
plotResults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/bin/python3
# Plot functions for neuronal and synaptic variables as well as spike raster plots
# Copyright 2021-2024 Jannik Luboeinski
# License: Apache-2.0 (http://www.apache.org/licenses/LICENSE-2.0)
# Contact: mail[at]jlubo.net
import numpy as np
import matplotlib.pyplot as plt
import json
import os
from pathlib import Path
from outputUtilities import getPresynapticId
#####################################
# plotResults
# Plots the results of a simulation of synaptic weights changing based on calcium dynamics
# config: configuration parameters in JSON format
# data_stacked: two-dimensional array containing the values of the membrane potential, weights, calcium amount, etc. over time
# timestamp: timestamp of the current trial
# dataset: number of the dataset (usually one neuron/synapse pair) that shall be considered
# mem_dyn_data [optional]: specifies if membrane potential and current shall be plotted
# neuron [optional]: number of the neuron that shall be considered [default: 0]
# pre_neuron [optional]: number of the presynaptic neuron that shall be considered for the synapse [default: 0]
# store_path [optional]: path to store resulting graphics file
# figure_fmt [optional]: format of resulting graphics file
def plotResults(config, data_stacked, timestamp, dataset, mem_dyn_data = False, neuron=0, pre_neuron=0, store_path = ".", figure_fmt = 'png'):
h_0 = config["synapses"]["syn_exc_calcium_plasticity"]["h_0"] # reference value (initial value) of synaptic weight
time = data_stacked[:,0] / 60 / 1000 # time values, in min
xlim_0 = 0 # lower limit of time axis, in min
xlim_1 = config["simulation"]["runtime"] / 60 # upper limit of time axis, in min
xlim_auto = False # auto-adjustment of x-axis
# adapt depending on whether membrane dynamics shall be plotted or not
if mem_dyn_data:
num_rows = 3 # number of rows in figure array
data_ptr = 3+dataset*7 # pointer to the first data column for the particular synapse
else:
num_rows = 2 # number of rows in figure array
data_ptr = 1+dataset*5 # pointer to the first data column for the particular synapse
fig, axes = plt.subplots(nrows=num_rows, ncols=1, sharex=False, figsize=(10, 10)) # create figure with 'num_rows' subfigures
# set axis labels for plasticity dynamics
axes[0].set_xlabel("Time (min)")
axes[0].set_ylabel("Synaptic weight (%)")
axes[0].set_xlim(xmin=xlim_0, xmax=xlim_1, auto=xlim_auto)
# plot data for plasticity dynamics
axes[0].plot(time, data_stacked[:,data_ptr]/h_0*100, color="#800000", label='Early-phase', marker='None', zorder=10)
axes[0].plot(time, (data_stacked[:,data_ptr+1]/h_0+1)*100, color="#1f77b4", label='Late-phase', marker='None', zorder=9)
axes[0].axhline(y=(config["synapses"]["syn_exc_calcium_plasticity"]["theta_pro"]/h_0+1)*100, label='Protein thresh.', linestyle='-.', color="#dddddd", zorder=5)
axes[0].axhline(y=(config["synapses"]["syn_exc_calcium_plasticity"]["theta_tag"]/h_0+1)*100, label='Tag thresh.', linestyle='dashed', color="#dddddd", zorder=4)
# create legend for plasticity dynamics
axes[0].legend(loc="center left")
if mem_dyn_data:
# set axis labels for membrane potential and current plots
axes[1].set_xlabel("Time (min)")
axes[1].set_ylabel("Membrane potential (mV)")
axes[1].set_xlim(xmin=xlim_0, xmax=xlim_1, auto=xlim_auto)
axes[1].set_ylim(-71, -54)
#axes[1].set_ylim(-80, 80)
ax1twin = axes[1].twinx() # create twin axis for axes[1]
ax1twin.set_ylabel("Current (nA)")
ax1twin.set_ylim(-2, 4)
# plot data for membrane potential and current data
ax1g1 = axes[1].plot(time, data_stacked[:,data_ptr-2], color="#ff0000", label='Membrane pot.', marker='None', zorder=10)
ax1g2 = ax1twin.plot(time, data_stacked[:,data_ptr-1], color="#ffee00", label='Membrane curr.', marker='None', zorder=9)
# create common legend for axes[1] and ax1twin
handles, labels = axes[1].get_legend_handles_labels()
handles_twin, labels_twin = ax1twin.get_legend_handles_labels()
axes[1].legend(handles + handles_twin, labels + labels_twin, loc="center left")
# set axis labels for calcium and protein plots
axes[num_rows-1].set_xlabel("Time (min)")
axes[num_rows-1].set_ylabel("Protein concentration (µM)")
axes[num_rows-1].set_xlim(xmin=xlim_0, xmax=xlim_1, auto=xlim_auto)
#axes[num_rows-1].set_ylim(-0.1, 15.1)
axLtwin = axes[num_rows-1].twinx() # create twin axis for axes[num_rows-1]
axLtwin.set_ylabel("Calcium amount")
#axLtwin.set_ylabel("SPS amount")
# plot data for sps and protein dynamics
axLtwin.plot(time, data_stacked[:,data_ptr+2], color="#c8c896", label='Calcium', marker='None', zorder=10)
#axLtwin.plot(time, data_stacked[:,data_ptr+3], color="#c8c896", label='SPS', marker='None', zorder=10)
axes[num_rows-1].plot(time, data_stacked[:,data_ptr+4], color="#008000", label='Protein', marker='None', zorder=9)
axLtwin.axhline(y=config["synapses"]["syn_exc_calcium_plasticity"]["theta_p"], label='LTP thresh.', linestyle='dashed', color="#969664", zorder=8)
axLtwin.axhline(y=config["synapses"]["syn_exc_calcium_plasticity"]["theta_d"], label='LTD thresh.', linestyle='dashed', color="#969696", zorder=7)
# create legend for sps and protein plots
handles, labels = axes[num_rows-1].get_legend_handles_labels()
handles_twin, labels_twin = axLtwin.get_legend_handles_labels()
axes[num_rows-1].legend(handles + handles_twin, labels + labels_twin, loc="center left")
#axes[num_rows-1].legend(loc="center left")
# save figure in given format (e.g., 'png' or 'svg')
fig.savefig(os.path.join(store_path, f"{timestamp}_traces_neuron_{neuron}_synapse_{pre_neuron}to{neuron}.{figure_fmt}"))
plt.close()
#####################################
# plotRaster
# Plots a spike raster, highlighting different neuronal subpopulations by different colors
# config: configuration parameters in JSON format
# spikes_stacked: two-dimensional array containing the neuron and time of each spike
# timestamp: timestamp of the current trial
# store_path [optional]: path to store resulting graphics file
# figure_fmt [optional]: format of resulting graphics file
def plotRaster(config, spikes_stacked, timestamp, store_path = ".", figure_fmt = 'png'):
N_CA = int(config["populations"]["N_CA"])
N_exc = int(config["populations"]["N_exc"])
N_inh = int(config["populations"]["N_inh"])
N = N_exc + N_inh # total number of neurons
xlim_0 = 0 # lower limit of x-axis
xlim_1 = config["simulation"]["runtime"]*1000 # upper limit of x-axis
#plt.axhspan(0, N_CA, color='k', alpha=0.5) # background color
#plt.axhspan(N_exc, N, color='r', alpha=0.5) # background color
mask_CA = (spikes_stacked[1] < N_CA)
mask_exc = np.logical_and(spikes_stacked[1] >= N_CA, spikes_stacked[1] < N_exc)
mask_inh = (spikes_stacked[1] >= N_exc)
marker_type = '.' # ','
marker_size = 1
plt.plot(spikes_stacked[0][mask_CA], spikes_stacked[1][mask_CA], marker_type, color='blue', markersize=marker_size)
plt.plot(spikes_stacked[0][mask_exc], spikes_stacked[1][mask_exc], marker_type, color='blue', markersize=marker_size)
plt.plot(spikes_stacked[0][mask_inh], spikes_stacked[1][mask_inh], marker_type, color='red', markersize=marker_size)
plt.xlim(xlim_0, xlim_1)
plt.ylim(0, N)
plt.xlabel('Time (ms)', fontsize=12)
plt.ylabel('Neuron index', fontsize=12)
yticklabels=np.linspace(0, N, num=5, endpoint=False)
plt.yticks(yticklabels, yticklabels, rotation='horizontal')
plt.gca().set_yticklabels(['{:.0f}'.format(y) for y in yticklabels])
plt.tight_layout()
plt.savefig(os.path.join(store_path, timestamp + '_spike_raster.' + figure_fmt), dpi=800)
plt.close()
#####################################
if __name__ == '__main__':
rawpaths = Path(".")
timestamp = None
for path in sorted(rawpaths.iterdir()):
tpath = os.path.split(str(path))[1] # take tail
if not path.is_dir() and "_traces.txt" in tpath:
timestamp = tpath.split("_traces")[0]
config = json.load(open(timestamp + "_config.json", "r"))
data_stacked = np.loadtxt(timestamp + '_traces.txt')
spikes_stacked = np.loadtxt(timestamp + '_spikes.txt').transpose()
#plotResults(config, data_stacked, timestamp, 0, mem_dyn_data = True, figure_fmt = 'svg')
sample_gid_list = config['simulation']['sample_gid_list'] # list of the neurons that are to be probed (given by number/gid)
sample_pre_list = config['simulation']['sample_pre_list'] # list of the presynaptic neurons for probing synapses (one value for each value in `sample_gid`; -1: no synapse probing)
for i in range(len(sample_gid_list)):
sample_gid = sample_gid_list[i]
sample_presyn_gid = getPresynapticId(sample_pre_list, i)
plotResults(config, data_stacked, timestamp, i, mem_dyn_data = True, neuron=sample_gid, pre_neuron=sample_presyn_gid, figure_fmt = 'svg')
if spikes_stacked.size != 0:
plotRaster(config, spikes_stacked, timestamp, figure_fmt = 'png')
else:
print("No spike data to plot...")