forked from keras-team/keras-cv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconftest.py
118 lines (106 loc) · 3.88 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright 2023 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import tensorflow as tf
from packaging import version
from keras_cv.src.backend import config as backend_config
from keras_cv.src.backend.config import keras_3
def pytest_addoption(parser):
parser.addoption(
"--run_large",
action="store_true",
default=False,
help="run large tests",
)
parser.addoption(
"--run_extra_large",
action="store_true",
default=False,
help="run extra_large tests",
)
parser.addoption(
"--check_gpu",
action="store_true",
default=False,
help="fail if a gpu is not present",
)
def pytest_configure(config):
# Verify that device has GPU and detected by backend
if config.getoption("--check_gpu"):
found_gpu = False
backend = backend_config.backend()
if backend == "jax":
import jax
try:
found_gpu = bool(jax.devices("gpu"))
except RuntimeError:
found_gpu = False
elif backend == "tensorflow":
found_gpu = bool(tf.config.list_logical_devices("GPU"))
elif backend == "torch":
import torch
found_gpu = bool(torch.cuda.device_count())
if not found_gpu:
pytest.fail(f"No GPUs discovered on the {backend} backend.")
config.addinivalue_line(
"markers", "large: mark test as being slow or requiring a network"
)
config.addinivalue_line(
"markers",
"extra_large: mark test as being too large to run continuously",
)
config.addinivalue_line(
"markers",
"tf_keras_only: mark test as a Keras 2-only test",
)
config.addinivalue_line(
"markers",
"tf_only: mark test as a Tensorflow-only test",
)
def pytest_collection_modifyitems(config, items):
run_extra_large_tests = config.getoption("--run_extra_large")
# Run large tests for --run_extra_large or --run_large.
run_large_tests = config.getoption("--run_large") or run_extra_large_tests
# Run Keras saving tests on 2.12 stable, nightlies and later releases.
skip_keras_saving_test = pytest.mark.skipif(
version.parse(tf.__version__) < version.parse("2.12.0-dev0"),
reason="keras_v3 format requires tf > 2.12.",
)
skip_large = pytest.mark.skipif(
not run_large_tests, reason="need --run_large option to run"
)
skip_extra_large = pytest.mark.skipif(
not run_extra_large_tests, reason="need --run_extra_large option to run"
)
skip_keras_2_only = pytest.mark.skipif(
keras_3(),
reason="This test is only supported on Keras 2",
)
skip_tf_only = pytest.mark.skipif(
keras_3() and backend_config.backend() != "tensorflow",
reason="This test is only supported on TensorFlow",
)
for item in items:
if "keras_format" in item.name:
item.add_marker(skip_keras_saving_test)
if "tf_format" in item.name:
item.add_marker(skip_extra_large)
if "large" in item.keywords:
item.add_marker(skip_large)
if "extra_large" in item.keywords:
item.add_marker(skip_extra_large)
if "tf_keras_only" in item.keywords:
item.add_marker(skip_keras_2_only)
if "tf_only" in item.keywords:
item.add_marker(skip_tf_only)