-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPDE.tex
69 lines (56 loc) · 1.87 KB
/
PDE.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\chapter{Partial Differential Equations}
\label{chap:part-diff-equat}
\section{Introduction}
\label{sec:introduction-9}
{\bf Partial differential equations} (PDE) is a powerful method that
has been intensively utilized in computer simulation of continuous
systems. PDE are classified into 3 categories:
\begin{itemize}
\item {\it hyperbolic}: e.g. the 1D wave equation
\begin{eqnarray}
\label{eq:13}
\frac{\partial^2 u}{\partial t^2} = v^2
\frac{\partial^2u}{\partial x^2}
\end{eqnarray}
with $v$ is the velocity
\item {\it parabolic}: e.g. the 1D diffusion equation
\begin{eqnarray}
\label{eq:14}
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x}\left(
\frac{D\partial u}{\partial x}\right)
\end{eqnarray}
with $D$ is diffusion coefficient.
\item {\it elliptic}: e.g. Poisson equation
\begin{eqnarray}
\label{eq:15}
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial
y^2}= \rho(x,y)
\end{eqnarray}
with $\rho$ is the source term. If $\rho=0$, it becomes {\it Laplace's
equation}.
\end{itemize}
\section{Hyperbolic PDE}
\label{sec:hyperbolic-pde}
A {\bf hyperbolic PDE} of order $n$ is a PDE that has a well-posed IVP
for the first $n-1$ derivatives. Many of the equations of mechanics
are hyperbolic. The model of hyperbolic equation is the
{\bf wave equation} (read Sec.~\ref{sec:wave-equation}).
\begin{eqnarray*}
u_{tt}-c^2u_{xx} = 0
\end{eqnarray*}
\section{Elliptic PDE}
\label{sec:elliptic-pde}
\section{Parabolic PDE}
\label{sec:parabolic-pde}
A {\bf parabolic PDE} is a second-order PDE, describing a wide family
of problems in science, e.g. heat diffusion, stock option #,
ocean acoustic propagation...
A PDE of the form
\begin{eqnarray*}
Au_{xx}+Bu_{xy}+Cu_{yy}+... = 0
\end{eqnarray*}
is a parabolic if $B^2-4AC=0$.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "gpucomputing"
%%% End: