-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path192_17_Thomas_Breydo.tex
145 lines (121 loc) · 3.93 KB
/
192_17_Thomas_Breydo.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
\documentclass{amsart}
\usepackage{thomas} % my style file, https://git.io/thomas.sty
\newcommand{\pagenum}{192}
\newcommand{\probnum}{17}
\title{\pagenum.\probnum}
\author{Thomas\ Breydo}
\begin{document}
\maketitle
\begin{problem*}
For $u\in V,$ let $\Phi u$ denote the linear functional $V$ defined
by
\begin{align*}
(\Phi u)(v)=\iprod{v,u}
\end{align*}
for $v\in V.$
\begin{enumerate}[label=(\alph*),topsep=2ex,itemsep=2ex]
\item Show that if $\F=\R,$ then $\Phi$ is a linear map from $V$
to $V'.$ (Recall from Section 3.F that $V'=\SL(V,\F)$
and that $V'$ is called the dual space of $V.$)
\item Show that if $\F=\C$ and $V\ne\{0\}$, then $\Phi$ is not
a linear map.
\item Show that $\Phi$ is injective.
\item Suppose $\F=\R$ and $V$ is finite-dimensional. Use parts
(a) and (c) and a dimension-counting argument (but without
using 6.42) to show that $\Phi$ is an isomorphism from
$V$ onto $V'.$
\end{enumerate}
\end{problem*}
\begin{note*}
Part (d) gives an alternative proof of the Reisz Representation
Theorem (6.42) when $\F=\R.$ Part (d) also gives a natural
isomorphism (meaning that it does not depend on a choice of
basis) from a finite-dimensional real inner product space
onto its dual space.
\end{note*}
\vspace{0.5in}
\begin{claim}
If $\F=\R,$ then $\Phi$ is a linear map from $V$ to $V'.$
\end{claim}
\begin{proof}
Suppose $u_1,u_2\in V.$ Then, the functional $\Phi(u_1+u_2)$ sends
$v\in V$ to
\begin{align*}
\big(\Phi(u_1+u_2)\big)(v) &= \iprod{v,u_1+u_2} \\
&= \iprod{v,u_1}+\iprod{v,u_2} \\
&= (\Phi u_1)(v)+(\Phi u_2)(v).
\end{align*}
Thus, $\Phi$ is additive.
Next, suppose $\lambda\in\F$ and
$u\in V.$ Then, the functional $\Phi(\lambda u)$ sends
sends $v\in V$ to
\begin{align*}
\big(\Phi(\lambda u)\big)(v) &= \iprod{v, \lambda u} \\
&= \overline\lambda\iprod{v, u} \\
&= \lambda\iprod{v,u} &&(\F=\R) \\
&= \lambda(\Phi{u})(v).
\end{align*}
Thus, $\Phi$ is homogenous. Since it is both additive and homogenous,
it is linear.
\end{proof}
\vspace{0.5in}
\begin{claim}
If $\F=\C$ and $V\ne\{0\},$ then $\Phi$ is not a linear map.
\end{claim}
\begin{proof}
Since $V\ne\{0\},$ there exists a $u\in V$ such that $u\ne 0.$
We will show that
\begin{align*}
\Phi(iu)\ne i\Phi(u),
\end{align*}
and thus $\Phi$ is not a linear map. Namely,
$\Phi(iu)$ and $i\Phi(u)$ send $u$ to two different values:
\begin{align*}
\big(\Phi(iu)\big)(u) &= \iprod{u,iu} \\
&= \overline i\iprod{u,u} \\
&= -i\iprod{u,u},
\end{align*}
while
\begin{align*}
\big(i\Phi(u)\big)(u) &= i\big(\Phi(u)\big)(u) \\
&= i\iprod{u,u}.
\end{align*}
These are indeed different because $\iprod{u,u}\ne0$ (since $u\ne 0$).
\end{proof}
\vspace{0.5in}
\begin{claim}
$\Phi$ is injective.
\end{claim}
\begin{proof}
Suppose $u\in V$ and $\Phi u$ is the zero map. Then,
\begin{align*}
(\Phi u)(u) = 0.
\end{align*}
Since $(\Phi u)(u)=\iprod{u,u},$ the definiteness of the inner
product implies $u=0.$
Thus, $\Phi$ is injective.
\end{proof}
\vspace{0.5in}
\begin{claim}
If $\F=\R$ and $V$ is finite-dimensional, then
$\Phi$ is an isomorphism from $V$ onto $V'.$
\end{claim}
\begin{proof}
By \textsf{Claim 1} and \textsf{Claim 3},
$\Phi$ is an injective linear map from $V$ onto $V'.$ Thus,
\begin{align*}
\dim V' &= \dim V \\
&= \dim\vrange\Phi+\dim\vnull\Phi \\
&= \dim\vrange\Phi.
\end{align*}
But if $\dim\vrange\Phi=\dim V'$, then $\Phi$ must be surjective.
Since it is both injective and surjective, it is invertible.
Thus, it is an isomorphism.
\end{proof}
\vspace{0.5in}
\begin{note*}
You can view the source code for this solution
\href{https://github.com/thomasbreydo/linalg/blob/main/\pagenum_\probnum_Thomas_Breydo.tex}
{here}.
\end{note*}
\end{document}