-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path216_21_Thomas_Breydo.tex
150 lines (136 loc) · 3.63 KB
/
216_21_Thomas_Breydo.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
\documentclass{amsart}
\usepackage{thomas} % my style file, https://git.io/thomas.sty
\newcommand{\pagenum}{216}
\newcommand{\probnum}{21}
\title{\pagenum.\probnum}
\author{Thomas\ Breydo}
\begin{document}
\maketitle
\begin{problem*}
Fix a positive integer $n.$ In the inner product space of
continuous real-valued functions on $[-\pi, \pi]$ with inner
product
\begin{align*}
\iprod{f,g}=\int_{-\pi}^\pi{\!f(x)g(x)\dx},
\end{align*}
let
\begin{align*}
V=\vspan(1,\sin x,\sin 2x,\dots,\sin nx,\cos x,\cos 2x,\dots,\cos nx).
\end{align*}
\begin{enumerate}[label=(\alph*),itemsep=1em,topsep=1em]
\item Define $D\in\SL(V)$ by $Df=f'.$ Show that $D^*=-D.$
Conclude that $D$ is normal but not self-adjoint.
\item Define $T\in\SL(V)$ by $Tf=f''.$ Show that $T$ is
self-adjoint.
\end{enumerate}
\end{problem*}
\vspace{0.5in}
\begin{claim*}
For all $f,g\in V,$
\begin{align*}
f(\pi)g(\pi)=f(-\pi)g(-\pi).
\end{align*}
\end{claim*}
\begin{proof}
Suppose $f,g\in V.$ Then,
\begin{align*}
f(x) &= a_0+a_1\sin x+\dots+a_n\sin nx+a_{n+1}\cos x+\dots+a_{2n}\cos nx \\
g(x) &= b_0+b_1\sin x+\dots+b_n\sin nx+b_{n+1}\cos x+\dots+b_{2n}\cos nx.
\end{align*}
Since all terms of $f(\pi)g(\pi)$ with $\sin(k\pi)$ will be zero,
\begin{align*}
f(\pi)g(\pi)= a_0b_0 &+ a_0\sum_{i=1}^n b_{n+i}\cos(i\pi)
+ b_0\sum_{i=1}^n a_{n+i}\cos(i\pi)\\
&+\sum_{1\le i,j\le n}
a_{n+i}\cos(i\pi)b_{n+j}\cos(j\pi).
\end{align*}
Similarly,
\begin{align*}
f(-\pi)g(-\pi)= a_0b_0 &+ a_0\sum_{i=1}^n b_{n+i}\cos(-i\pi)
+ b_0\sum_{i=1}^n a_{n+i}\cos(-i\pi)\\
&+\sum_{1\le i,j\le n}
a_{n+i}\cos(-i\pi)b_{n+j}\cos(-j\pi).
\end{align*}
But since $\cos(-x)=\cos(x),$ we see that
$f(\pi)g(\pi)=f(-\pi)g(-\pi).$
\end{proof}
\begin{claim*}
For all $f,g\in V,$
\begin{align*}
\int_{-\pi}^{\pi}{\!f'(x)g(x)\dx} = -\int_{-\pi}^{\pi}{\!f(x)g'(x)\dx}
\end{align*}
\end{claim*}
\begin{proof}
Starting with the previous claim,
\begin{align*}
0 &= f(\pi)g(\pi)-f(-\pi)g(-\pi) \\
&=(f\cdot g)(x)\bigg\vert_{-\pi}^\pi \\
&=\int_{-\pi}^{\pi}{\!(f\cdot g)'(x)\dx} \\
&=\int_{-\pi}^{\pi}{\!f'(x)g(x)\dx}
+\int_{-\pi}^\pi{\!f(x)g'(x)\dx}.
\end{align*}
Thus,
\begin{align*}
\int_{-\pi}^{\pi}{\!f'(x)g(x)\dx}=-\int_{-\pi}^\pi{\!f(x)g'(x)\dx}
\end{align*}
as desired.\\
\end{proof}
Recall that $D\in\SL(V)$ is defined by $Tf=f'.$
\begin{claim*}
$D^*=-D.$
\end{claim*}
\begin{proof}
Since $D^*$ is unique, all we need to do is show that for all
$f,g\in V,$
\begin{align*}
\iprod{Df,g}=\iprod{f,-Dg}.
\end{align*}
Indeed,
\begin{align*}
\iprod{Df,g} &= \iprod{f',g}\\
&= \int_{-\pi}^{\pi}{\!f'(x)g(x)\dx} \\
&=-\int_{-\pi}^\pi{\!f(x)g'(x)\dx} && (\text{previous claim})\\
&= -\iprod{f,Dg} \\
&= \iprod{f,-Dg}
\end{align*}
as desired.
\end{proof}
\begin{claim*}
$D$ is normal.
\end{claim*}
\begin{proof}
\begin{align*}
DD^* &= (D)(-D) \\
&= (-D)(D) \\
&= D^*D,
\end{align*}
and thus $D$ is normal.
\end{proof}
\begin{claim*}
$D$ is not self-adjoint.
\end{claim*}
\begin{proof}
Clearly $D\ne D^*$ since $D^*=-D.\\$
\end{proof}
Recall that $T\in\SL(V)$ is defined by $Tf=f''.$
\begin{claim*}
$T$ is self-adjoint.
\end{claim*}
\begin{proof}
Since $T=DD,$
\begin{align*}
T^* &= (DD)^* \\
&= D^*D^* \\
&= (-D)(-D) \\
&= DD \\
&= T.
\end{align*}
Thus, $T$ is self-adjoint.
\end{proof}
\vspace{0.5in}
\begin{note*}
You can view the source code for this solution
\href{https://github.com/thomasbreydo/linalg/blob/main/\pagenum_\probnum_Thomas_Breydo.tex}
{here}.
\end{note*}
\end{document}