-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
97 lines (82 loc) · 3.51 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from torch.utils.data import Dataset
import torch
class TrainDataset(Dataset):
def __init__(self, texts_dict, txtid2row, imgid2row, text_embs, img_embs, text_image_pairs):
super().__init__()
self.texts_dict = texts_dict
self.txtid2row = txtid2row
self.imgid2row = imgid2row
self.text_embs = text_embs
self.img_embs = img_embs
self.text_image_pairs = text_image_pairs
def __len__(self):
return len(self.text_image_pairs)
def __getitem__(self, index):
text_id, image_id = self.text_image_pairs[index]
text = self.texts_dict[text_id]
text_emb = self.text_embs[self.txtid2row[text_id]]
img_emb = self.img_embs[self.imgid2row[image_id]]
return {"type": "train", "text": text, "text_emb": torch.tensor(text_emb), "img_emb": torch.tensor(img_emb)}
class VectorCollator:
def __init__(self, tokenizer) -> None:
self.tokenizer = tokenizer
def __call__(self, batch):
if batch[0]["type"] == "train":
batch_texts = []
batch_txt_embs = []
batch_img_embs = []
for item in batch:
batch_texts.append(item["text"])
batch_txt_embs.append(item["text_emb"])
batch_img_embs.append(item["img_emb"])
batch_txt_embs = torch.stack(batch_txt_embs, dim=0)
batch_img_embs = torch.stack(batch_img_embs, dim=0)
batch_texts = self.tokenizer(
batch_texts, truncation=True, padding=True, return_tensors="pt")
return batch_texts, batch_txt_embs, batch_img_embs
elif batch[0]["type"] == "text":
batch_text_ids = []
batch_texts = []
batch_txt_embs = []
for item in batch:
batch_text_ids.append(item["text_id"])
batch_texts.append(item["text"])
batch_txt_embs.append(item["text_emb"])
batch_txt_embs = torch.stack(batch_txt_embs, dim=0)
batch_texts = self.tokenizer(
batch_texts, truncation=True, padding=True, return_tensors="pt")
return batch_text_ids, batch_texts, batch_txt_embs
elif batch[0]["type"] == "image":
batch_img_ids = []
batch_img_embs = []
for item in batch:
batch_img_ids.append(item["img_id"])
batch_img_embs.append(item["img_emb"])
batch_img_embs = torch.stack(batch_img_embs, dim=0)
return batch_img_ids, batch_img_embs
class TextCollection(Dataset):
def __init__(self, ids, texts, txtid2row, txt_embs):
super().__init__()
self.ids = ids
self.texts = texts
self.txtid2row = txtid2row
self.txt_embs = txt_embs
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
item_id = self.ids[index]
item_text = self.texts[index]
item_emb = self.txt_embs[self.txtid2row[item_id]]
return {"type": "text", "text_id": item_id, "text": item_text, "text_emb": torch.tensor(item_emb)}
class ImageCollection(Dataset):
def __init__(self, ids, imgid2row, img_embs):
super().__init__()
self.ids = ids
self.imgid2row = imgid2row
self.img_embs = img_embs
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
item_id = self.ids[index]
item_emb = self.img_embs[self.imgid2row[item_id]]
return {"type": "image", "img_id": item_id, "img_emb": torch.tensor(item_emb)}