-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathvispy_test.py
233 lines (196 loc) · 8.17 KB
/
vispy_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) 2015, Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: Nicolas P .Rougier
# Date: 04/03/2014
# -----------------------------------------------------------------------------
import math
import numpy as np
from vispy import app
from vispy.gloo import gl
def checkerboard(grid_num=8, grid_size=32):
row_even = grid_num // 2 * [0, 1]
row_odd = grid_num // 2 * [1, 0]
Z = np.row_stack(grid_num // 2 * (row_even, row_odd)).astype(np.uint8)
return 255 * Z.repeat(grid_size, axis=0).repeat(grid_size, axis=1)
def rotate(M, angle, x, y, z, point=None):
angle = math.pi * angle / 180
c, s = math.cos(angle), math.sin(angle)
n = math.sqrt(x * x + y * y + z * z)
x /= n
y /= n
z /= n
cx, cy, cz = (1 - c) * x, (1 - c) * y, (1 - c) * z
R = np.array([[cx * x + c, cy * x - z * s, cz * x + y * s, 0],
[cx * y + z * s, cy * y + c, cz * y - x * s, 0],
[cx * z - y * s, cy * z + x * s, cz * z + c, 0],
[0, 0, 0, 1]], dtype=M.dtype).T
M[...] = np.dot(M, R)
return M
def translate(M, x, y=None, z=None):
y = x if y is None else y
z = x if z is None else z
T = np.array([[1.0, 0.0, 0.0, x],
[0.0, 1.0, 0.0, y],
[0.0, 0.0, 1.0, z],
[0.0, 0.0, 0.0, 1.0]], dtype=M.dtype).T
M[...] = np.dot(M, T)
return M
def frustum(left, right, bottom, top, znear, zfar):
M = np.zeros((4, 4), dtype=np.float32)
M[0, 0] = +2.0 * znear / (right - left)
M[2, 0] = (right + left) / (right - left)
M[1, 1] = +2.0 * znear / (top - bottom)
M[3, 1] = (top + bottom) / (top - bottom)
M[2, 2] = -(zfar + znear) / (zfar - znear)
M[3, 2] = -2.0 * znear * zfar / (zfar - znear)
M[2, 3] = -1.0
return M
def perspective(fovy, aspect, znear, zfar):
h = math.tan(fovy / 360.0 * math.pi) * znear
w = h * aspect
return frustum(-w, w, -h, h, znear, zfar)
def makecube():
""" Generate vertices & indices for a filled cube """
vtype = [('a_position', np.float32, 3),
('a_texcoord', np.float32, 2)]
itype = np.uint32
# Vertices positions
p = np.array([[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1],
[1, -1, -1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1]])
# Texture coords
t = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])
faces_p = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6,
1, 1, 6, 7, 2, 7, 4, 3, 2, 4, 7, 6, 5]
faces_t = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
vertices = np.zeros(24, vtype)
vertices['a_position'] = p[faces_p]
vertices['a_texcoord'] = t[faces_t]
indices = np.resize(
np.array([0, 1, 2, 0, 2, 3], dtype=itype), 6 * (2 * 3))
indices += np.repeat(4 * np.arange(6), 6).astype(np.uint32)
return vertices, indices
cube_vertex = """
uniform mat4 u_model;
uniform mat4 u_view;
uniform mat4 u_projection;
attribute vec3 a_position;
attribute vec2 a_texcoord;
varying vec2 v_texcoord;
void main()
{
gl_Position = u_projection * u_view * u_model * vec4(a_position,1.0);
v_texcoord = a_texcoord;
}
"""
cube_fragment = """
uniform sampler2D u_texture;
varying vec2 v_texcoord;
void main()
{
gl_FragColor = texture2D(u_texture, v_texcoord);
}
"""
class Canvas(app.Canvas):
def __init__(self):
app.Canvas.__init__(self, size=(512, 512),
title='Rotating cube (GL version)',
keys='interactive')
def on_initialize(self, event):
# Build & activate cube program
self.cube = gl.glCreateProgram()
vertex = gl.glCreateShader(gl.GL_VERTEX_SHADER)
fragment = gl.glCreateShader(gl.GL_FRAGMENT_SHADER)
gl.glShaderSource(vertex, cube_vertex)
gl.glShaderSource(fragment, cube_fragment)
gl.glCompileShader(vertex)
gl.glCompileShader(fragment)
gl.glAttachShader(self.cube, vertex)
gl.glAttachShader(self.cube, fragment)
gl.glLinkProgram(self.cube)
gl.glDetachShader(self.cube, vertex)
gl.glDetachShader(self.cube, fragment)
gl.glUseProgram(self.cube)
# Get data & build cube buffers
vcube_data, self.icube_data = makecube()
vcube = gl.glCreateBuffer()
gl.glBindBuffer(gl.GL_ARRAY_BUFFER, vcube)
gl.glBufferData(gl.GL_ARRAY_BUFFER, vcube_data, gl.GL_STATIC_DRAW)
icube = gl.glCreateBuffer()
gl.glBindBuffer(gl.GL_ELEMENT_ARRAY_BUFFER, icube)
gl.glBufferData(gl.GL_ELEMENT_ARRAY_BUFFER,
self.icube_data, gl.GL_STATIC_DRAW)
# Bind cube attributes
stride = vcube_data.strides[0]
offset = 0
loc = gl.glGetAttribLocation(self.cube, "a_position")
gl.glEnableVertexAttribArray(loc)
gl.glVertexAttribPointer(loc, 3, gl.GL_FLOAT, False, stride, offset)
offset = vcube_data.dtype["a_position"].itemsize
loc = gl.glGetAttribLocation(self.cube, "a_texcoord")
gl.glEnableVertexAttribArray(loc)
gl.glVertexAttribPointer(loc, 2, gl.GL_FLOAT, False, stride, offset)
# Create & bind cube texture
crate = checkerboard()
texture = gl.glCreateTexture()
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER,
gl.GL_LINEAR)
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER,
gl.GL_LINEAR)
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S,
gl.GL_CLAMP_TO_EDGE)
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T,
gl.GL_CLAMP_TO_EDGE)
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_LUMINANCE, gl.GL_LUMINANCE,
gl.GL_UNSIGNED_BYTE, crate.shape[:2])
gl.glTexSubImage2D(gl.GL_TEXTURE_2D, 0, 0, 0, gl.GL_LUMINANCE,
gl.GL_UNSIGNED_BYTE, crate)
loc = gl.glGetUniformLocation(self.cube, "u_texture")
gl.glUniform1i(loc, texture)
gl.glBindTexture(gl.GL_TEXTURE_2D, 0)
# Create & bind cube matrices
view = np.eye(4, dtype=np.float32)
model = np.eye(4, dtype=np.float32)
projection = np.eye(4, dtype=np.float32)
translate(view, 0, 0, -7)
self.phi, self.theta = 60, 20
rotate(model, self.theta, 0, 0, 1)
rotate(model, self.phi, 0, 1, 0)
loc = gl.glGetUniformLocation(self.cube, "u_model")
gl.glUniformMatrix4fv(loc, 1, False, model)
loc = gl.glGetUniformLocation(self.cube, "u_view")
gl.glUniformMatrix4fv(loc, 1, False, view)
loc = gl.glGetUniformLocation(self.cube, "u_projection")
gl.glUniformMatrix4fv(loc, 1, False, projection)
# OpenGL initalization
gl.glClearColor(0.30, 0.30, 0.35, 1.00)
gl.glEnable(gl.GL_DEPTH_TEST)
self._resize(*(self.size + self.physical_size))
self.timer = app.Timer('auto', self.on_timer, start=True)
def on_draw(self, event):
gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
gl.glDrawElements(gl.GL_TRIANGLES, self.icube_data.size,
gl.GL_UNSIGNED_INT, None)
def on_resize(self, event):
self._resize(*(event.size + event.physical_size))
def _resize(self, width, height, physical_width, physical_height):
gl.glViewport(0, 0, physical_width, physical_height)
projection = perspective(35.0, width / float(height), 2.0, 10.0)
loc = gl.glGetUniformLocation(self.cube, "u_projection")
gl.glUniformMatrix4fv(loc, 1, False, projection)
def on_timer(self, event):
self.theta += .5
self.phi += .5
model = np.eye(4, dtype=np.float32)
rotate(model, self.theta, 0, 0, 1)
rotate(model, self.phi, 0, 1, 0)
loc = gl.glGetUniformLocation(self.cube, "u_model")
gl.glUniformMatrix4fv(loc, 1, False, model)
self.update()
if __name__ == '__main__':
c = Canvas()
c.show()
app.run()