-
Notifications
You must be signed in to change notification settings - Fork 662
/
XceptionTime.py
72 lines (61 loc) · 3.22 KB
/
XceptionTime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/044_models.XceptionTime.ipynb.
# %% auto 0
__all__ = ['XceptionModule', 'XceptionBlock', 'XceptionTime']
# %% ../../nbs/044_models.XceptionTime.ipynb 3
from ..imports import *
from .layers import *
from .utils import *
# %% ../../nbs/044_models.XceptionTime.ipynb 4
# This is an unofficial PyTorch implementation developed by Ignacio Oguiza - oguiza@timeseriesAI.co based on:
# Rahimian, E., Zabihi, S., Atashzar, S. F., Asif, A., & Mohammadi, A. (2019).
# XceptionTime: A Novel Deep Architecture based on Depthwise Separable Convolutions for Hand Gesture Classification. arXiv preprint arXiv:1911.03803.
# and
# Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., ... & Petitjean, F. (2019).
# InceptionTime: Finding AlexNet for Time Series Classification. arXiv preprint arXiv:1909.04939.
# Official InceptionTime tensorflow implementation: https://github.com/hfawaz/InceptionTime
class XceptionModule(Module):
def __init__(self, ni, nf, ks=40, bottleneck=True):
ks = [ks // (2**i) for i in range(3)]
ks = [k if k % 2 != 0 else k - 1 for k in ks] # ensure odd ks
self.bottleneck = Conv1d(ni, nf, 1, bias=False) if bottleneck else noop
self.convs = nn.ModuleList([SeparableConv1d(nf if bottleneck else ni, nf, k, bias=False) for k in ks])
self.maxconvpool = nn.Sequential(*[nn.MaxPool1d(3, stride=1, padding=1), Conv1d(ni, nf, 1, bias=False)])
self.concat = Concat()
def forward(self, x):
input_tensor = x
x = self.bottleneck(input_tensor)
x = self.concat([l(x) for l in self.convs] + [self.maxconvpool(input_tensor)])
return x
@delegates(XceptionModule.__init__)
class XceptionBlock(Module):
def __init__(self, ni, nf, residual=True, **kwargs):
self.residual = residual
self.xception, self.shortcut = nn.ModuleList(), nn.ModuleList()
for i in range(4):
if self.residual and (i-1) % 2 == 0: self.shortcut.append(BN1d(n_in) if n_in == n_out else ConvBlock(n_in, n_out * 4 * 2, 1, act=None))
n_out = nf * 2 ** i
n_in = ni if i == 0 else n_out * 2
self.xception.append(XceptionModule(n_in, n_out, **kwargs))
self.add = Add()
self.act = nn.ReLU()
def forward(self, x):
res = x
for i in range(4):
x = self.xception[i](x)
if self.residual and (i + 1) % 2 == 0: res = x = self.act(self.add(x, self.shortcut[i//2](res)))
return x
@delegates(XceptionBlock.__init__)
class XceptionTime(Module):
def __init__(self, c_in, c_out, nf=16, nb_filters=None, adaptive_size=50, **kwargs):
nf = ifnone(nf, nb_filters)
self.block = XceptionBlock(c_in, nf, **kwargs)
self.head_nf = nf * 32
self.head = nn.Sequential(nn.AdaptiveAvgPool1d(adaptive_size),
ConvBlock(self.head_nf, self.head_nf//2, 1),
ConvBlock(self.head_nf//2, self.head_nf//4, 1),
ConvBlock(self.head_nf//4, c_out, 1),
GAP1d(1))
def forward(self, x):
x = self.block(x)
x = self.head(x)
return x