-
Notifications
You must be signed in to change notification settings - Fork 264
/
Copy pathvisualize_filters.py
119 lines (79 loc) · 3.2 KB
/
visualize_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from keras.models import Model
from keras.layers import Input, PReLU, Dense, LSTM, CuDNNLSTM, concatenate, Activation
from keras.layers import Conv1D, BatchNormalization, GlobalAveragePooling1D, Permute, Dropout
from utils.constants import MAX_SEQUENCE_LENGTH_LIST, NB_CLASSES_LIST, TRAIN_FILES
from utils.generic_utils import load_dataset_at
from utils.keras_utils import visualize_filters
from utils.layer_utils import AttentionLSTM
import os
import traceback
import json
from keras import backend as K
def generate_lstmfcn(MAX_SEQUENCE_LENGTH, NB_CLASS, NUM_CELLS=8):
ip = Input(shape=(1, MAX_SEQUENCE_LENGTH))
x = LSTM(NUM_CELLS)(ip)
x = Dropout(0.8)(x)
y = Permute((2, 1))(ip)
y = Conv1D(128, 8, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(256, 5, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(128, 3, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = GlobalAveragePooling1D()(y)
x = concatenate([x, y])
out = Dense(NB_CLASS, activation='softmax')(x)
model = Model(ip, out)
model.summary()
# add load model code here to fine-tune
return model
def generate_attention_lstmfcn(MAX_SEQUENCE_LENGTH, NB_CLASS, NUM_CELLS=8):
ip = Input(shape=(1, MAX_SEQUENCE_LENGTH))
x = AttentionLSTM(NUM_CELLS)(ip)
x = Dropout(0.8)(x)
y = Permute((2, 1))(ip)
y = Conv1D(128, 8, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(256, 5, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = Conv1D(128, 3, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = GlobalAveragePooling1D()(y)
x = concatenate([x, y])
out = Dense(NB_CLASS, activation='softmax')(x)
model = Model(ip, out)
model.summary()
# add load model code here to fine-tune
return model
if __name__ == '__main__':
# COMMON PARAMETERS
DATASET_ID = 0
num_cells = 8
model = generate_lstmfcn # Select model to build
# OLD 85 DATASET PARAMETERS
dataset_name = '' # 'cbf' # set to None to try to find out automatically for new datasets
# NEW 43 DATASET PARAMETERS
model_name = 'lstmfcn'
# Visualizaion params
CONV_ID = 0
FILTER_ID = 0
""" <<<<< SCRIPT SETUP >>>>> """
# Script setup
sequence_length = MAX_SEQUENCE_LENGTH_LIST[DATASET_ID]
nb_classes = NB_CLASSES_LIST[DATASET_ID]
model = model(sequence_length, nb_classes, num_cells)
if DATASET_ID >= 85:
dataset_name = None
if dataset_name is None:
base_weights_dir = '%s_%d_cells_weights/'
dataset_name = TRAIN_FILES[DATASET_ID][8:-6]
weights_dir = base_weights_dir % (model_name, num_cells)
dataset_name = weights_dir + dataset_name
visualize_filters(model, DATASET_ID, dataset_name, conv_id=CONV_ID, filter_id=FILTER_ID, seed=0,
normalize_timeseries=True)