-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathcontroller.py
508 lines (391 loc) · 19.3 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import numpy as np
import time
import pprint
from collections import OrderedDict
from keras import backend as K
import tensorflow as tf
import os
if not os.path.exists('weights/'):
os.makedirs('weights/')
class StateSpace:
'''
State Space manager
Provides utilit functions for holding "states" / "actions" that the controller
must use to train and predict.
Also provides a more convenient way to define the search space
'''
def __init__(self):
self.states = OrderedDict()
self.state_count_ = 0
def add_state(self, name, values):
'''
Adds a "state" to the state manager, along with some metadata for efficient
packing and unpacking of information required by the RNN Controller.
Stores metadata such as:
- Global ID
- Name
- Valid Values
- Number of valid values possible
- Map from value ID to state value
- Map from state value to value ID
Args:
name: name of the state / action
values: valid values that this state can take
Returns:
Global ID of the state. Can be used to refer to this state later.
'''
index_map = {}
for i, val in enumerate(values):
index_map[i] = val
value_map = {}
for i, val in enumerate(values):
value_map[val] = i
metadata = {
'id': self.state_count_,
'name': name,
'values': values,
'size': len(values),
'index_map_': index_map,
'value_map_': value_map,
}
self.states[self.state_count_] = metadata
self.state_count_ += 1
return self.state_count_ - 1
def embedding_encode(self, id, value):
'''
Embedding index encode the specific state value
Args:
id: global id of the state
value: state value
Returns:
embedding encoded representation of the state value
'''
state = self[id]
size = state['size']
value_map = state['value_map_']
value_idx = value_map[value]
one_hot = np.zeros((1, size), dtype=np.float32)
one_hot[np.arange(1), value_idx] = value_idx + 1
return one_hot
def get_state_value(self, id, index):
'''
Retrieves the state value from the state value ID
Args:
id: global id of the state
index: index of the state value (usually from argmax)
Returns:
The actual state value at given value index
'''
state = self[id]
index_map = state['index_map_']
if (type(index) == list or type(index) == np.ndarray) and len(index) == 1:
index = index[0]
value = index_map[index]
return value
def get_random_state_space(self, num_layers):
'''
Constructs a random initial state space for feeding as an initial value
to the Controller RNN
Args:
num_layers: number of layers to duplicate the search space
Returns:
A list of one hot encoded states
'''
states = []
for id in range(self.size * num_layers):
state = self[id]
size = state['size']
sample = np.random.choice(size, size=1)
sample = state['index_map_'][sample[0]]
state = self.embedding_encode(id, sample)
states.append(state)
return states
def parse_state_space_list(self, state_list):
'''
Parses a list of one hot encoded states to retrieve a list of state values
Args:
state_list: list of one hot encoded states
Returns:
list of state values
'''
state_values = []
for id, state_one_hot in enumerate(state_list):
state_val_idx = np.argmax(state_one_hot, axis=-1)[0]
value = self.get_state_value(id, state_val_idx)
state_values.append(value)
return state_values
def print_state_space(self):
''' Pretty print the state space '''
print('*' * 40, 'STATE SPACE', '*' * 40)
pp = pprint.PrettyPrinter(indent=2, width=100)
for id, state in self.states.items():
pp.pprint(state)
print()
def print_actions(self, actions):
''' Print the action space properly '''
print('Actions :')
for id, action in enumerate(actions):
if id % self.size == 0:
print("*" * 20, "Layer %d" % (((id + 1) // self.size) + 1), "*" * 20)
state = self[id]
name = state['name']
vals = [(n, p) for n, p in zip(state['values'], *action)]
print("%s : " % name, vals)
print()
def __getitem__(self, id):
return self.states[id % self.size]
@property
def size(self):
return self.state_count_
class Controller:
'''
Utility class to manage the RNN Controller
'''
def __init__(self, policy_session, num_layers, state_space,
reg_param=0.001,
discount_factor=0.99,
exploration=0.8,
controller_cells=32,
embedding_dim=20,
clip_norm=0.0,
restore_controller=False):
self.policy_session = policy_session # type: tf.Session
self.num_layers = num_layers
self.state_space = state_space # type: StateSpace
self.state_size = self.state_space.size
self.controller_cells = controller_cells
self.embedding_dim = embedding_dim
self.reg_strength = reg_param
self.discount_factor = discount_factor
self.exploration = exploration
self.restore_controller = restore_controller
self.clip_norm = clip_norm
self.reward_buffer = []
self.state_buffer = []
self.cell_outputs = []
self.policy_classifiers = []
self.policy_actions = []
self.policy_labels = []
self.build_policy_network()
def get_action(self, state):
'''
Gets a one hot encoded action list, either from random sampling or from
the Controller RNN
Args:
state: a list of one hot encoded states, whose first value is used as initial
state for the controller RNN
Returns:
A one hot encoded action list
'''
if np.random.random() < self.exploration:
print("Generating random action to explore")
actions = []
for i in range(self.state_size * self.num_layers):
state_ = self.state_space[i]
size = state_['size']
sample = np.random.choice(size, size=1)
sample = state_['index_map_'][sample[0]]
action = self.state_space.embedding_encode(i, sample)
actions.append(action)
return actions
else:
print("Prediction action from Controller")
initial_state = self.state_space[0]
size = initial_state['size']
if state[0].shape != (1, size):
state = state[0].reshape((1, size)).astype('int32')
else:
state = state[0]
print("State input to Controller for Action : ", state.flatten())
with self.policy_session.as_default():
K.set_session(self.policy_session)
with tf.name_scope('action_prediction'):
pred_actions = self.policy_session.run(self.policy_actions, feed_dict={self.state_input: state})
return pred_actions
def build_policy_network(self):
with self.policy_session.as_default():
K.set_session(self.policy_session)
with tf.name_scope('controller'):
with tf.variable_scope('policy_network'):
# state input is the first input fed into the controller RNN.
# the rest of the inputs are fed to the RNN internally
with tf.name_scope('state_input'):
state_input = tf.placeholder(dtype=tf.int32, shape=(1, None), name='state_input')
self.state_input = state_input
# we can use LSTM as the controller as well
nas_cell = tf.nn.rnn_cell.LSTMCell(self.controller_cells)
cell_state = nas_cell.zero_state(batch_size=1, dtype=tf.float32)
embedding_weights = []
# for each possible state, create a new embedding. Reuse the weights for multiple layers.
with tf.variable_scope('embeddings', reuse=tf.AUTO_REUSE):
for i in range(self.state_size):
state_ = self.state_space[i]
size = state_['size']
# size + 1 is used so that 0th index is never updated and is "default" value
weights = tf.get_variable('state_embeddings_%d' % i,
shape=[size + 1, self.embedding_dim],
initializer=tf.initializers.random_uniform(-1., 1.))
embedding_weights.append(weights)
# initially, cell input will be 1st state input
embeddings = tf.nn.embedding_lookup(embedding_weights[0], state_input)
cell_input = embeddings
# we provide a flat list of chained input-output to the RNN
for i in range(self.state_size * self.num_layers):
state_id = i % self.state_size
state_space = self.state_space[i]
size = state_space['size']
with tf.name_scope('controller_output_%d' % i):
# feed the ith layer input (i-1 layer output) to the RNN
outputs, final_state = tf.nn.dynamic_rnn(nas_cell,
cell_input,
initial_state=cell_state,
dtype=tf.float32)
# add a new classifier for each layers output
classifier = tf.layers.dense(outputs[:, -1, :], units=size, name='classifier_%d' % (i),
reuse=False)
preds = tf.nn.softmax(classifier)
# feed the previous layer (i-1 layer output) to the next layers input, along with state
# take the class label
cell_input = tf.argmax(preds, axis=-1)
cell_input = tf.expand_dims(cell_input, -1, name='pred_output_%d' % (i))
cell_input = tf.cast(cell_input, tf.int32)
cell_input = tf.add(cell_input, 1) # we avoid using 0 so as to have a "default" embedding at 0th index
# embedding lookup of this state using its state weights ; reuse weights
cell_input = tf.nn.embedding_lookup(embedding_weights[state_id], cell_input,
name='cell_output_%d' % (i))
cell_state = final_state
# store the tensors for later loss computation
self.cell_outputs.append(cell_input)
self.policy_classifiers.append(classifier)
self.policy_actions.append(preds)
policy_net_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='policy_network')
with tf.name_scope('optimizer'):
self.global_step = tf.Variable(0, trainable=False)
starter_learning_rate = 0.1
learning_rate = tf.train.exponential_decay(starter_learning_rate, self.global_step,
500, 0.95, staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
self.optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate)
with tf.name_scope('losses'):
self.discounted_rewards = tf.placeholder(tf.float32, shape=(None,), name='discounted_rewards')
tf.summary.scalar('discounted_reward', tf.reduce_sum(self.discounted_rewards))
# calculate sum of all the individual classifiers
cross_entropy_loss = 0
for i in range(self.state_size * self.num_layers):
classifier = self.policy_classifiers[i]
state_space = self.state_space[i]
size = state_space['size']
with tf.name_scope('state_%d' % (i + 1)):
labels = tf.placeholder(dtype=tf.float32, shape=(None, size), name='cell_label_%d' % i)
self.policy_labels.append(labels)
ce_loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=classifier, labels=labels)
tf.summary.scalar('state_%d_ce_loss' % (i + 1), tf.reduce_mean(ce_loss))
cross_entropy_loss += ce_loss
policy_gradient_loss = tf.reduce_mean(cross_entropy_loss)
reg_loss = tf.reduce_sum([tf.reduce_sum(tf.square(x)) for x in policy_net_variables]) # Regularization
# sum up policy gradient and regularization loss
self.total_loss = policy_gradient_loss + self.reg_strength * reg_loss
tf.summary.scalar('total_loss', self.total_loss)
self.gradients = self.optimizer.compute_gradients(self.total_loss)
with tf.name_scope('policy_gradients'):
# normalize gradients so that they dont explode if argument passed
if self.clip_norm is not None and self.clip_norm != 0.0:
norm = tf.constant(self.clip_norm, dtype=tf.float32)
gradients, vars = zip(*self.gradients) # unpack the two lists of gradients and the variables
gradients, _ = tf.clip_by_global_norm(gradients, norm) # clip by the norm
self.gradients = list(zip(gradients, vars)) # we need to set values later, convert to list
# compute policy gradients
for i, (grad, var) in enumerate(self.gradients):
if grad is not None:
self.gradients[i] = (grad * self.discounted_rewards, var)
# training update
with tf.name_scope("train_policy_network"):
# apply gradients to update policy network
self.train_op = self.optimizer.apply_gradients(self.gradients, global_step=self.global_step)
self.summaries_op = tf.summary.merge_all()
timestr = time.strftime("%Y-%m-%d-%H-%M-%S")
filename = 'logs/%s' % timestr
self.summary_writer = tf.summary.FileWriter(filename, graph=self.policy_session.graph)
self.policy_session.run(tf.global_variables_initializer())
self.saver = tf.train.Saver(max_to_keep=1)
if self.restore_controller:
path = tf.train.latest_checkpoint('weights/')
if path is not None and tf.train.checkpoint_exists(path):
print("Loading Controller Checkpoint !")
self.saver.restore(self.policy_session, path)
def store_rollout(self, state, reward):
self.reward_buffer.append(reward)
self.state_buffer.append(state)
# dump buffers to file if it grows larger than 50 items
if len(self.reward_buffer) > 20:
with open('buffers.txt', mode='a+') as f:
for i in range(20):
state_ = self.state_buffer[i]
state_list = self.state_space.parse_state_space_list(state_)
state_list = ','.join(str(v) for v in state_list)
f.write("%0.4f,%s\n" % (self.reward_buffer[i], state_list))
print("Saved buffers to file `buffers.txt` !")
self.reward_buffer = [self.reward_buffer[-1]]
self.state_buffer = [self.state_buffer[-1]]
def discount_rewards(self):
'''
Compute discounted rewards over the entire reward buffer
Returns:
Discounted reward value
'''
rewards = np.asarray(self.reward_buffer)
discounted_rewards = np.zeros_like(rewards)
running_add = 0
for t in reversed(range(0, rewards.size)):
if rewards[t] != 0:
running_add = 0
running_add = running_add * self.discount_factor + rewards[t]
discounted_rewards[t] = running_add
return discounted_rewards[-1]
def train_step(self):
'''
Perform a single train step on the Controller RNN
Returns:
the training loss
'''
states = self.state_buffer[-1]
label_list = []
# parse the state space to get real value of the states,
# then one hot encode them for comparison with the predictions
state_list = self.state_space.parse_state_space_list(states)
for id, state_value in enumerate(state_list):
state_one_hot = self.state_space.embedding_encode(id, state_value)
label_list.append(state_one_hot)
# the initial input to the controller RNN
state_input_size = self.state_space[0]['size']
state_input = states[0].reshape((1, state_input_size)).astype('int32')
print("State input to Controller for training : ", state_input.flatten())
# the discounted reward value
reward = self.discount_rewards()
reward = np.asarray([reward]).astype('float32')
feed_dict = {
self.state_input: state_input,
self.discounted_rewards: reward
}
# prepare the feed dict with the values of all the policy labels for each
# of the Controller outputs
for i, label in enumerate(label_list):
feed_dict[self.policy_labels[i]] = label
with self.policy_session.as_default():
K.set_session(self.policy_session)
print("Training RNN (States ip) : ", state_list)
print("Training RNN (Reward ip) : ", reward.flatten())
_, loss, summary, global_step = self.policy_session.run([self.train_op, self.total_loss, self.summaries_op,
self.global_step],
feed_dict=feed_dict)
self.summary_writer.add_summary(summary, global_step)
self.saver.save(self.policy_session, save_path='weights/controller.ckpt', global_step=self.global_step)
# reduce exploration after many train steps
if global_step != 0 and global_step % 20 == 0 and self.exploration > 0.5:
self.exploration *= 0.99
return loss
def remove_files(self):
files = ['train_history.csv', 'buffers.txt']
for file in files:
if os.path.exists(file):
os.remove(file)