-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathtrain.py
110 lines (86 loc) · 3.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import csv
import tensorflow as tf
from keras import backend as K
from keras.datasets import cifar10
from keras.utils import to_categorical
from controller import Controller, StateSpace
from manager import NetworkManager
from model import model_fn
# create a shared session between Keras and Tensorflow
policy_sess = tf.Session()
K.set_session(policy_sess)
NUM_LAYERS = 4 # number of layers of the state space
MAX_TRIALS = 250 # maximum number of models generated
MAX_EPOCHS = 10 # maximum number of epochs to train
CHILD_BATCHSIZE = 128 # batchsize of the child models
EXPLORATION = 0.8 # high exploration for the first 1000 steps
REGULARIZATION = 1e-3 # regularization strength
CONTROLLER_CELLS = 32 # number of cells in RNN controller
EMBEDDING_DIM = 20 # dimension of the embeddings for each state
ACCURACY_BETA = 0.8 # beta value for the moving average of the accuracy
CLIP_REWARDS = 0.0 # clip rewards in the [-0.05, 0.05] range
RESTORE_CONTROLLER = True # restore controller to continue training
# construct a state space
state_space = StateSpace()
# add states
state_space.add_state(name='kernel', values=[1, 3])
state_space.add_state(name='filters', values=[16, 32, 64])
# print the state space being searched
state_space.print_state_space()
# prepare the training data for the NetworkManager
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
dataset = [x_train, y_train, x_test, y_test] # pack the dataset for the NetworkManager
previous_acc = 0.0
total_reward = 0.0
with policy_sess.as_default():
# create the Controller and build the internal policy network
controller = Controller(policy_sess, NUM_LAYERS, state_space,
reg_param=REGULARIZATION,
exploration=EXPLORATION,
controller_cells=CONTROLLER_CELLS,
embedding_dim=EMBEDDING_DIM,
restore_controller=RESTORE_CONTROLLER)
# create the Network Manager
manager = NetworkManager(dataset, epochs=MAX_EPOCHS, child_batchsize=CHILD_BATCHSIZE, clip_rewards=CLIP_REWARDS,
acc_beta=ACCURACY_BETA)
# get an initial random state space if controller needs to predict an
# action from the initial state
state = state_space.get_random_state_space(NUM_LAYERS)
print("Initial Random State : ", state_space.parse_state_space_list(state))
print()
# clear the previous files
controller.remove_files()
# train for number of trails
for trial in range(MAX_TRIALS):
with policy_sess.as_default():
K.set_session(policy_sess)
actions = controller.get_action(state) # get an action for the previous state
# print the action probabilities
state_space.print_actions(actions)
print("Predicted actions : ", state_space.parse_state_space_list(actions))
# build a model, train and get reward and accuracy from the network manager
reward, previous_acc = manager.get_rewards(model_fn, state_space.parse_state_space_list(actions))
print("Rewards : ", reward, "Accuracy : ", previous_acc)
with policy_sess.as_default():
K.set_session(policy_sess)
total_reward += reward
print("Total reward : ", total_reward)
# actions and states are equivalent, save the state and reward
state = actions
controller.store_rollout(state, reward)
# train the controller on the saved state and the discounted rewards
loss = controller.train_step()
print("Trial %d: Controller loss : %0.6f" % (trial + 1, loss))
# write the results of this trial into a file
with open('train_history.csv', mode='a+') as f:
data = [previous_acc, reward]
data.extend(state_space.parse_state_space_list(state))
writer = csv.writer(f)
writer.writerow(data)
print()
print("Total Reward : ", total_reward)