forked from mever-team/distill-and-select
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_dns.py
270 lines (237 loc) · 13.6 KB
/
evaluation_dns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import time
import torch
import utils
import argparse
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from model.selector import SelectorNetwork
from datasets.generators import DatasetGenerator
from model.students import FineGrainedStudent, CoarseGrainedStudent
@torch.no_grad()
def calculate_similarities_to_queries(model, queries, target, args):
similarities = []
total_time = 0.
for i, query in enumerate(queries):
if query.device.type == 'cpu':
query = query.to(args.gpu_id)
sim = []
start_time = time.time()
for b in range(target.shape[0]//args.batch_sz_sim + 1):
batch = target[b*args.batch_sz_sim: (b+1)*args.batch_sz_sim]
if batch.shape[0] >= 4:
sim.append(model.calculate_video_similarity(query, batch))
sim = torch.mean(torch.cat(sim, 0))
total_time += time.time() - start_time
similarities.append(sim.cpu().numpy())
return similarities, total_time
def get_similarities_for_percentage(coarse_similarities, fine_similarities, selector_scores, percentage, mask):
similarities = {}
for query, query_sims in coarse_similarities.items():
similarities[query] = np.copy(query_sims)
idx = selector_scores[query][:int(percentage*np.sum(mask))]
if len(idx):
sims = np.copy(query_sims)[mask]
sims[idx] = fine_similarities[query][mask][idx]
similarities[query][mask] = sims
return similarities
@torch.no_grad()
def main(fine_student, coarse_student, selector_network, dataset, args):
# Create a video generator for the queries
generator = DatasetGenerator(args.dataset_hdf5, dataset.get_queries())
loader = DataLoader(generator, num_workers=args.workers, collate_fn=utils.collate_eval)
# Extract features of the queries
all_db, queries_ids, queries_fs, queries_cs, queries_sn = set(), [], [], [], []
print('\n> Extract features of the query videos')
for video in tqdm(loader):
video_features = video[0][0].to(args.gpu_id)
video_id = video[2][0]
if len(video_id) == 0:
continue
queries_ids.append(video_id)
all_db.add(video_id)
# Extract features of the query video
fine_features = fine_student.index_video(video_features)
if not args.load_queries: fine_features = fine_features.cpu()
coarse_features = coarse_student.index_video(video_features).cpu()
selector_features = selector_network.index_video(video_features).cpu()
queries_fs.append(fine_features)
queries_cs.append(coarse_features)
queries_sn.append(selector_features)
# Initialize similarities of the two students
fine_similarities = dict({query: np.zeros(len(dataset.get_database())) for query in queries_ids})
coarse_similarities = dict({query: np.zeros(len(dataset.get_database())) for query in queries_ids})
# Create a video generator for the database video
generator = DatasetGenerator(args.dataset_hdf5, dataset.get_database())
loader = DataLoader(generator, num_workers=args.workers, collate_fn=utils.collate_eval)
targets_ids, targets_cs, targets_sn, available_video_mask = [], [], [], []
storage_fs, storage_cs, storage_sn = [], [], []
time_fs, time_cs, time_sn = [], [], []
print('\n> Extract features of the target videos and calculate fine-grained similarities')
for j, video in enumerate(tqdm(loader)):
video_features = video[0][0].to(args.gpu_id)
video_id = video[2][0]
if len(video_id) == 0:
available_video_mask.append(False)
continue
available_video_mask.append(True)
targets_ids.append(video_id)
all_db.add(video_id)
# Extract features of the target video
fine_features = fine_student.index_video(video_features)
coarse_features = coarse_student.index_video(video_features).cpu()
selector_features = selector_network.index_video(video_features).cpu()
targets_cs.append(coarse_features)
targets_sn.append(selector_features)
storage_fs.append(fine_features.nelement() * (1/8 if args.binarization else 4))
storage_cs.append(coarse_features.nelement() * 4)
storage_sn.append(selector_features.nelement() * 4)
# Calculate fine-grained similarities
similarities, total_time = calculate_similarities_to_queries(fine_student, queries_fs, fine_features, args)
time_fs.append(total_time)
for i, s in enumerate(similarities):
fine_similarities[queries_ids[i]][j] = float(s / 2. + 0.5)
targets_sn = torch.cat(targets_sn, 0)
print('\n> Calculate coarse-grained similarities and selector\'s scores')
selector_scores = {}
for i, query in enumerate(tqdm(queries_ids)):
start_time = time.time()
# Calculate coarse-grained similarities
similarities = [coarse_student.calculate_video_similarity(queries_cs[i], t) for t in targets_cs]
time_cs.append(time.time() - start_time)
similarities = torch.cat(similarities)
coarse_similarities[query][available_video_mask] = similarities.squeeze(-1).numpy()
start_time = time.time()
# Calculate query-target scores based on the selector network
selector_features = queries_sn[i].repeat(len(targets_ids), 1)
selector_features = torch.cat([selector_features, targets_sn, similarities], 1).to(args.gpu_id)
scores = selector_network(selector_features).squeeze(-1)
selector_scores[query] = torch.argsort(scores, descending=True).cpu().numpy()
time_sn.append(time.time() - start_time)
print('\n> Calculate results')
print('\n---Storage requirements---')
storage_fs = np.sum(storage_fs) / len(targets_ids) / 1024
print(f'Fine-grained Student: {np.round(storage_fs)} KB per video')
storage_cs = np.sum(storage_cs) / len(targets_ids) / 1024
print(f'Coarse-grained Student: {np.round(storage_cs, 4)} KB per video')
storage_dns = storage_fs + storage_cs + np.sum(storage_sn) / len(targets_ids) / 1024
print(f'DnS framework: {np.round(storage_dns)} KB per video')
print('\n---Time requirements---')
time_fs = np.sum(time_fs) / len(queries_ids)
print(f'Fine-grained Student: {np.round(time_fs, 4)} sec per query')
time_cs = np.sum(time_cs) / len(queries_ids)
print(f'Coarse-grained Student: {np.round(time_cs, 4)} sec per query')
if args.percentage == 'all':
percentages = [np.round(i * 0.05, 2) for i in range(21)]
time_dns = np.round([time_fs * p + time_cs + np.sum(time_sn) / len(queries_ids) for p in percentages], 4)
print('DnS framework: {} sec per query'.format('\t'.join(map(str, time_dns))))
print('\n---Retrieval results---')
mAPs = {}
for p in percentages:
similarities = get_similarities_for_percentage(coarse_similarities, fine_similarities,
selector_scores, p, available_video_mask)
results = dataset.evaluate(similarities, all_db, verbose=False)
for k, v in results.items():
if k not in mAPs: mAPs[k] = []
mAPs[k].append(np.round(v, 4))
print(
'perc.:\t{}'.format(
'\t'.join([f'{int(p * 100)}%' for p in percentages])
)
)
for k, v in mAPs.items():
print('{}:\t{}'.format(k, '\t'.join(map(str, v))))
else:
time_dns = time_fs * float(args.percentage) + time_cs + np.sum(time_sn) / len(queries_ids)
print(f'DnS: {np.round(time_dns, 4)} sec per query')
print('\n---Retrieval results---')
similarities = get_similarities_for_percentage(coarse_similarities, fine_similarities,
selector_scores, float(args.percentage),
available_video_mask)
dataset.evaluate(similarities, all_db)
if __name__ == '__main__':
formatter = lambda prog: argparse.ArgumentDefaultsHelpFormatter(prog, max_help_position=80)
parser = argparse.ArgumentParser(description='This is the code for the evaluation of the trained student on five datasets.', formatter_class=formatter)
parser.add_argument('--dataset', type=str, required=True, choices=["FIVR-200K", "FIVR-5K", "CC_WEB_VIDEO", "SVD", "EVVE"],
help='Name of evaluation dataset.')
parser.add_argument('--dataset_hdf5', type=str, required=True,
help='Path to hdf5 file containing the features of the evaluation dataset')
parser.add_argument('--percentage', type=str, default='all',
help='Dataset percentage sent to the Fine-grained Student for reranking. Providing \'all\' evaluates system\'s performance for all dataset percentages.')
parser.add_argument('--attention', type=utils.bool_flag, default=False,
help='Boolean flag indicating whether a Fine-grained Attention Student will be used.')
parser.add_argument('--binarization', type=utils.bool_flag, default=False,
help='Boolean flag indicating whether a Fine-grained Binarization Student will be used.')
parser.add_argument('--fine_student_path', type=str, default=None,
help='Path to a trained Fine-grained Student. If it is not provided, then the pretrained weights are used with the default architecture.')
parser.add_argument('--coarse_student_path', type=str, default=None,
help='Path to a trained Coarse-grained Student. If it is not provided, then the pretrained weights are used with the default architecture.')
parser.add_argument('--selector_network_path', type=str, default=None,
help='Path to a trained Selector Network. If it is not provided, then the pretrained weights are used with the default architecture.')
parser.add_argument('--batch_sz', type=int, default=32,
help='Number of videos processed in each batch. Aplicable only with Coarse-greained Students.')
parser.add_argument('--batch_sz_sim', type=int, default=2048,
help='Number of feature tensors in each batch during similarity calculation.')
parser.add_argument('--gpu_id', type=int, default=0,
help='ID of the GPU used for the student evaluation.')
parser.add_argument('--load_queries', type=utils.bool_flag, default=True,
help='Boolean flag indicating whether the query fine-grained features will be loaded to the GPU memory. Aplicable only for Fine-grained Students.')
parser.add_argument('--workers', type=int, default=8,
help='Number of workers used for video loading.')
args = parser.parse_args()
if 'CC_WEB' in args.dataset:
from datasets import CC_WEB_VIDEO
dataset = CC_WEB_VIDEO()
elif 'FIVR' in args.dataset:
from datasets import FIVR
dataset = FIVR(version=args.dataset.split('-')[1].lower())
elif 'EVVE' in args.dataset:
from datasets import EVVE
dataset = EVVE()
elif 'SVD' in args.dataset:
from datasets import SVD
dataset = SVD()
print('\n> Loading Fine-grained Student')
if args.fine_student_path is not None:
d = torch.load(args.fine_student_path, map_location='cpu')
fine_student = FineGrainedStudent(**vars(d['args']))
fine_student.load_state_dict(d['model'])
elif args.attention or args.binarization:
fine_student = FineGrainedStudent(attention=args.attention,
binarization=args.binarization,
pretrained=True)
else:
raise Exception('No pretrained network for the given inputs. Provide either `--attention` or `--binarization` arguments as true for the pretrained fine-grained students.')
fine_student = fine_student.to(args.gpu_id)
fine_student.eval()
print('>> Network architecture')
print(fine_student)
print('\n> Loading Coarse-grained Student')
if args.coarse_student_path is not None:
d = torch.load(args.coarse_student_path, map_location='cpu')
coarse_student = CoarseGrainedStudent(**vars(d['args']))
coarse_student.load_state_dict(d['model'])
else:
coarse_student = CoarseGrainedStudent(pretrained=True)
coarse_student = coarse_student.to(args.gpu_id)
coarse_student.eval()
print('>> Network architecture')
print(coarse_student)
print('\n> Loading Selector Network')
if args.selector_network_path is not None:
d = torch.load(args.selector_network_path, map_location='cpu')
selector_network = SelectorNetwork(**vars(d['args']))
selector_network.load_state_dict(d['model'])
else:
if not args.attention and not args.binarization:
raise Exception('No pretrained network for the given inputs. Provide either `--attention` or `--binarization` arguments as true for the pretrained fine-grained students.')
if args.fine_student_path is not None or args.coarse_student_path is not None:
print('[WARNING] The pretrained Selector Network has been trained with the provided pretrained students. Using it with custom students may result in inaccurate predictions.')
selector_network = SelectorNetwork(attention=args.attention,
binarization=args.binarization,
pretrained=True)
selector_network = selector_network.to(args.gpu_id)
selector_network.eval()
print('>> Network architecture')
print(selector_network)
main(fine_student, coarse_student, selector_network, dataset, args)