forked from Rushi314/eg3d_with_stable_diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg2img.py
51 lines (45 loc) · 1.46 KB
/
img2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from PIL import Image
import torch
from torch import autocast
from tqdm.auto import tqdm
import random
from diffusers import StableDiffusionImg2ImgPipeline, LMSDiscreteScheduler, StableDiffusionPipeline
import os
#from diffusers import StableDiffusionInpaintPipeline
device = "cuda:3"
model_path = "CompVis/stable-diffusion-v1-4"
lms = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000
)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_path,
scheduler=lms,
use_auth_token=True
)
pipe.safety_checker = lambda images, clip_input: (images, False)
pipe = pipe.to(device)
prompt = "High quality rendering of 3D Naruto face"
#breakpoint()
outdir = 'dummy/00007/'
if not os.path.exists(outdir):
os.makedirs(outdir)
in_file_path = 'navi10k/'
filelist=os.listdir(in_file_path)
for ib, img_path in enumerate(filelist):
if ib <= 4000:
continue
if ib > 10000:
break
if not img_path.endswith(".png"):
continue
print(ib)
init_img = Image.open(in_file_path+img_path).convert("RGB")
init_img = init_img.resize((512, 512))
#seed = random.randint(10000, 10000000)
generator = torch.Generator(device=device).manual_seed(102871)
with autocast('cuda'):
image = pipe(prompt=prompt, init_image=init_img, strength=0.60, guidance_scale=12, num_inference_steps=100, generator=generator).images[0]
image.save(outdir+img_path)