forked from ijkguo/mx-rcnn
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_widerface.py
177 lines (160 loc) · 10.3 KB
/
train_widerface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse, os, logging
import mxnet as mx
from rcnn.callback import Speedometer
from rcnn.config import config
from rcnn.loader import AnchorLoader
from rcnn.metric import AccuracyMetric, LogLossMetric, SmoothL1LossMetric
from rcnn.module import MutableModule
from rcnn.resnet import resnet_50
from rcnn.symbol import get_faster_rcnn
from utils.load_data import load_gt_roidb_from_list
from utils.load_model import do_checkpoint, load_param
from rcnn.warmup import WarmupScheduler
from rcnn.minibatch import assign_anchor
import numpy as np
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def init_config():
config.TRAIN.BG_THRESH_HI = 0.5 # TODO(verify)
config.TRAIN.BG_THRESH_LO = 0.0 # TODO(verify)
config.SCALES = (640, ) # for wider face detection training
config.MAX_SIZE = 1024
config.TRAIN.RPN_MIN_SIZE = 10
config.TRAIN.HAS_RPN = True
config.END2END = 1
config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True
def get_max_shape(feat_sym):
max_data_shape = [('data', (config.TRAIN.IMS_PER_BATCH, 3, config.MAX_SIZE, config.MAX_SIZE))]
max_data_shape_dict = {k: v for k, v in max_data_shape}
_, feat_shape, _ = feat_sym.infer_shape(**max_data_shape_dict)
label = assign_anchor(feat_shape[0], np.zeros((0, 5)), [[config.MAX_SIZE, config.MAX_SIZE, 1.0]],
scales=(4, 8, 16, 32))
max_label_shape = [('label', label['label'].shape),
('bbox_target', label['bbox_target'].shape),
('bbox_inside_weight', label['bbox_inside_weight'].shape),
('bbox_outside_weight', label['bbox_outside_weight'].shape),
('gt_boxes', (config.TRAIN.IMS_PER_BATCH, 5*1200))] # assume at most 1200 faces in image
return max_data_shape, max_label_shape
def init_model(args_params, auxs_params, train_data, sym, sym_name):
if "resnet" in args.pretrained:
del args_params['fc1_weight']
del args_params['fc1_bias']
else:
del args_params['fc8_weight']
del args_params['fc8_bias']
input_shapes = {k: (1,)+ v[1::] for k, v in train_data.provide_data + train_data.provide_label}
arg_shape, _, _ = sym.infer_shape(**input_shapes)
arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
args_params['rpn_conv_3x3_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight'])
args_params['rpn_conv_3x3_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_conv_3x3_bias'])
args_params['rpn_cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight'])
args_params['rpn_cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_cls_score_bias'])
args_params['rpn_bbox_pred_weight'] = mx.random.normal(0, 0.001, shape=arg_shape_dict['rpn_bbox_pred_weight']) # guarantee not likely explode with bbox_delta
args_params['rpn_bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_bbox_pred_bias'])
args_params['cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['cls_score_weight'])
args_params['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias'])
args_params['bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['bbox_pred_weight'])
args_params['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias'])
return args_params, auxs_params
def metric():
rpn_eval_metric = AccuracyMetric(use_ignore=True, ignore=-1, ex_rpn=True)
rpn_cls_metric = LogLossMetric(use_ignore=True, ignore=-1, ex_rpn=True)
rpn_bbox_metric = SmoothL1LossMetric(ex_rpn=True)
eval_metric = AccuracyMetric()
cls_metric = LogLossMetric()
bbox_metric = SmoothL1LossMetric()
eval_metrics = mx.metric.CompositeEvalMetric()
for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
eval_metrics.add(child_metric)
return eval_metrics
def main():
logging.info('########## TRAIN FASTER-RCNN WITH APPROXIMATE JOINT END2END #############')
init_config()
if "resnet" in args.pretrained:
sym = resnet_50(num_class=args.num_classes, bn_mom=args.bn_mom, bn_global=True, is_train=True) # consider background
else:
sym = get_faster_rcnn(num_classes=args.num_classes) # consider background
feat_sym = sym.get_internals()['rpn_cls_score_output']
# setup for multi-gpu
ctx = [mx.gpu(int(i)) for i in args.gpu_ids.split(',')]
config.TRAIN.IMS_PER_BATCH *= len(ctx)
max_data_shape, max_label_shape = get_max_shape(feat_sym)
# data
voc, roidb = load_gt_roidb_from_list(args.dataset_name, args.lst, args.dataset_root,
args.outdata_path, flip=not args.no_flip)
train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.IMS_PER_BATCH, anchor_scales=(4, 8, 16, 32),
shuffle=not args.no_shuffle, mode='train', ctx=ctx, need_mean=args.need_mean)
# model
args_params, auxs_params, _ = load_param(args.pretrained, args.load_epoch, convert=True)
if not args.resume:
args_params, auxs_params= init_model(args_params, auxs_params, train_data, sym, args.pretrained)
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
batch_end_callback = Speedometer(train_data.batch_size, frequent=args.frequent)
epoch_end_callback = do_checkpoint(args.prefix)
optimizer_params = {'momentum': args.mom,
'wd': args.wd,
'learning_rate': args.lr,
# 'lr_scheduler': WarmupScheduler(args.factor_step, 0.1, warmup_lr=0.1*args.lr, warmup_step=200) \
# if not args.resume else mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1),
'lr_scheduler': mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1), # seems no need warm up
'clip_gradient': 1.0,
'rescale_grad': 1.0}
if "resnet" in args.pretrained:
# only consider resnet-50 here
fixed_param_prefix = ['conv0', 'stage1', 'stage2', 'bn_data', 'bn0']
else:
fixed_param_prefix = ['conv1', 'conv2', 'conv3']
# train
mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx,
max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
fixed_param_prefix=fixed_param_prefix)
mod.fit(train_data, eval_metric=metric(), epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback, kvstore=args.kv_store,
optimizer='sgd', optimizer_params=optimizer_params, arg_params=args_params, aux_params=auxs_params,
begin_epoch=args.load_epoch, num_epoch=args.num_epoch)
if __name__ == '__main__':
logging.info('############### TRAIN FASTER-RCNN WITH APPROXIMATE JOINT END2END ##################\n'
' -----------------------------------------------------------------------------------')
parser = argparse.ArgumentParser(description='Train Faster R-CNN Network using list file of annotation')
parser.add_argument('--dataset-name', type=str, default='wider_face', help='give a name of your dataset')
parser.add_argument('--image_set', type=str, default='trainval', help='can be trainval or train')
parser.add_argument('--test_set', type=str, default='test', help='can be test or val')
parser.add_argument('--lst', dest='lst', type=str, default='data/trainval.lst', help='the list file of annotation')
parser.add_argument('--num-classes', dest='num_classes', help='the class number of detection, include backgound',
default=2, type=int)
parser.add_argument('--outdata-path', type=str, default=os.path.join(os.getcwd(), 'data'),
help='output data folder')
parser.add_argument('--dataset-root', type=str, default=os.path.join(os.getcwd(), 'data'),
help='the root path of your dataset')
parser.add_argument('--pretrained', dest='pretrained', help='pretrained model prefix',
default=os.path.join(os.getcwd(), 'model', 'resnet-50'), type=str)
parser.add_argument('--load-epoch', dest='load_epoch', help='epoch of pretrained model',
default=0, type=int)
parser.add_argument('--prefix', dest='prefix', help='new model prefix',
default=os.path.join(os.getcwd(), 'model', 'faster-resnet-50'), type=str)
parser.add_argument('--gpus', dest='gpu_ids', help='GPU device to train with',
default='0', type=str)
parser.add_argument('--num_epoch', dest='num_epoch', help='end epoch of faster rcnn end2end training',
default=10, type=int)
parser.add_argument('--frequent', dest='frequent', help='frequency of logging',
default=20, type=int)
parser.add_argument('--kv-store', dest='kv_store', help='the kv-store type',
default='device', type=str)
parser.add_argument('--need-mean', action='store_true', default=False,
help='if true, then will minus the mean value of pixel, resnet pre-trained model do not need this')
parser.add_argument('--no-flip', action='store_true', default=False,
help='if true, then will flip the dataset')
parser.add_argument('--no-shuffle', action='store_true', default=False,
help='if true, then will shuffle the dataset')
parser.add_argument('--lr', type=float, default=0.001, help='initialization learning reate')
parser.add_argument('--mom', type=float, default=0.9, help='momentum for sgd')
parser.add_argument('--bn-mom', type=float, default=0.99, help='momentum for batch normalization')
parser.add_argument('--wd', type=float, default=0.0005, help='weight decay for sgd')
parser.add_argument('--resume', action='store_true', default=False,
help='if true, then will retrain the model from rcnn')
parser.add_argument('--factor-step',type=int, default=50000, help='the step used for lr factor')
args = parser.parse_args()
logging.info(args)
print "\n -----------------------------------------------------------------------------------"
main()