forked from mossr/BeautifulAlgorithms.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathem_algorithm.jl
38 lines (34 loc) · 1.11 KB
/
em_algorithm.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
using Distributions, LinearAlgebra
function e_step(θ, x)
φ, μ, Σ = θ.φ, θ.μ, θ.Σ
n, k = length(x), length(φ)
w = Matrix{Real}(undef, n, k)
for i in 1:n
for j in 1:k
normalization = sum(pdf(MvNormal(μ[l], Σ[l]), x[i]) * φ[l] for l in 1:k)
w[i,j] = (pdf(MvNormal(μ[j], Σ[j]), x[i]) * φ[j]) / normalization
end
end
return w
end
function m_step!(θ, w, x)
φ, μ, Σ = θ.φ, θ.μ, θ.Σ
n, k = length(x), length(φ)
for j in 1:k
sum_w = sum(w[i,j] for i in 1:n)
φ[j] = 1/n * sum_w
μ[j] = sum(w[i,j]*x[i] for i in 1:n) / sum_w
Σ[j] = sum(w[i,j]*(x[i]-μ[j])*(x[i]-μ[j])' for i in 1:n) / sum_w |> Hermitian
end
return θ
end
function em_algorithm!(x, θ; tol=eps(Float32))
while true
θ₋₁ = deepcopy(θ)
w = e_step(θ, x)
m_step!(θ, w, x)
all([norm(θ₋₁.μ - θ.μ), norm(θ₋₁.Σ - θ.Σ), norm(θ₋₁.φ - θ.φ)] .< tol) && break
end
return θ
end
classify(xᵢ, θ) = argmax([pdf(MvNormal(θ.μ[j], θ.Σ[j]), xᵢ) for j in 1:length(θ.μ)])