-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetwork.java
66 lines (55 loc) · 2.28 KB
/
Network.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import java.util.Random;
public class Network {
public int inputSize; // Tamaño de la capa de entrada
public int hiddenSize; // Tamaño de la capa oculta
public int outputSize; // Tamaño de la capa de salida
private double[][] inputHiddenWeights; // Pesos entre la capa de entrada y la capa oculta
private double[][] hiddenOutputWeights; // Pesos entre la capa oculta y la capa de salida
public Network(int inputSize, int hiddenSize, int outputSize) {
this.inputSize = inputSize;
this.hiddenSize = hiddenSize;
this.outputSize = outputSize;
// Inicialización de pesos con valores aleatorios
inputHiddenWeights = new double[inputSize][hiddenSize];
hiddenOutputWeights = new double[hiddenSize][outputSize];
Random rand = new Random();
for (int i = 0; i < inputSize; i++) {
for (int j = 0; j < hiddenSize; j++) {
inputHiddenWeights[i][j] = rand.nextDouble();
}
}
for (int i = 0; i < hiddenSize; i++) {
for (int j = 0; j < outputSize; j++) {
hiddenOutputWeights[i][j] = rand.nextDouble();
}
}
}
// Función de activación (puede ser una función sigmoide u otra)
private double sigmoid(double x) {
return 1 / (1 + Math.exp(-x)) - 1 / 2;
}
public double[] predict(double[] inputs) {
if (inputs.length != inputSize) {
throw new IllegalArgumentException("Tamaño de entrada incorrecto");
}
// Calcular salidas de la capa oculta
double[] hiddenLayerOutputs = new double[hiddenSize];
for (int i = 0; i < hiddenSize; i++) {
double sum = 0;
for (int j = 0; j < inputSize; j++) {
sum += inputs[j] * inputHiddenWeights[j][i];
}
hiddenLayerOutputs[i] = sigmoid(sum);
}
// Calcular salidas de la capa de salida
double[] outputLayerOutputs = new double[outputSize];
for (int i = 0; i < outputSize; i++) {
double sum = 0;
for (int j = 0; j < hiddenSize; j++) {
sum += hiddenLayerOutputs[j] * hiddenOutputWeights[j][i];
}
outputLayerOutputs[i] = sigmoid(sum);
}
return outputLayerOutputs;
}
}