-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIsingmodel3D.cc
executable file
·268 lines (245 loc) · 7.47 KB
/
Isingmodel3D.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
Ising Model for Computational Physics
*/
#include <iostream> //cout
#include <fstream> //instream, ofstream
#include <cstdlib> //rand, srand
#include <ctime> //time_t, time
#include <cmath> //abs, exp, pow
using namespace std;
const int SIZE=40;
const int NSTEPS=20;
const int INTERACTION=1;
const int EXTERNAL_FIELD=0;
const double START_TEMPERATURE=3.0;
const double STOP_TEMPERATURE=6.0;
const double TEMPERATURE_STEP_SIZE=0.05;
const bool USE_WOLFF=true;
class Lattice{
public:
Lattice();
void configurePositive();
void configureNegative();
void configureRandomly();
double computeHamiltonian();
int computeMagnetisation();
double getHamiltonian();
int getMagnetisation();
double getTemperature();
void setTemperature(double temperature);
double computeHamiltonianDifference(int i, int j, int k);
void doTimestep();
void doWolffRecursion(int i, int j, int k);
void doWolffTimestep();
void thermalize();
private:
int grid[SIZE][SIZE][SIZE];
int J;
int B;
double beta;
double hamiltonian;
double magnetisation;
double probabilityWolff;
};//Lattice
Lattice::Lattice(){
J=INTERACTION;
B=EXTERNAL_FIELD;
beta=1/START_TEMPERATURE;
probabilityWolff=1-exp(-2*beta*J);
for(int i=0;i<SIZE;i++){
for(int j=0;j<SIZE;j++){
for(int k=0;k<SIZE;k++){
grid[i][j][k]=1;
}
}
}
hamiltonian=computeHamiltonian();
magnetisation=computeMagnetisation();
}//Lattice::constructor
void Lattice::configurePositive(){
for(int i=0;i<SIZE;i++){
for(int j=0;j<SIZE;j++){
for(int k=0;k<SIZE;k++){
grid[i][j][k]=1;
}
}
}
hamiltonian=computeHamiltonian();
magnetisation=computeMagnetisation();
}//Lattice::configurePositive
void Lattice::configureNegative(){
for(int i=0;i<SIZE;i++){
for(int j=0;j<SIZE;j++){
for(int k=0;k<SIZE;k++){
grid[i][j][k]=-1;
}
}
}
hamiltonian=computeHamiltonian();
magnetisation=computeMagnetisation();
}//Lattice::configureNegative
void Lattice::configureRandomly(){
for(int i=0;i<SIZE;i++){
for(int j=0;j<SIZE;j++){
for(int k=0;k<SIZE;k++){
grid[i][j][k]=2*(rand()%2)-1;
}
}
}
hamiltonian=computeHamiltonian();
magnetisation=computeMagnetisation();
}//Lattice::configureRandomly
double Lattice::computeHamiltonian(){
double H=0;
for(int i=0;i<SIZE;i++){
for(int j=0;j<SIZE;j++){
for(int k=0;k<SIZE;k++){
H=H-J*grid[i][j][k]*(grid[(i+1)%SIZE][j][k]+grid[i][(j+1)%SIZE][k]+grid[i][j][(k+1)%SIZE])-B*grid[i][j][k];
}
}
}
return H;
}//Lattice::computeHamiltonian
int Lattice::computeMagnetisation(){
int M=0;
for(int i=0;i<SIZE;i++){
for(int j=0;j<SIZE;j++){
for(int k=0;k<SIZE;k++){
M=M+grid[i][j][k];
}
}
}
return M;
}//Lattice::computeMagnetisation
double Lattice::getHamiltonian(){
return hamiltonian;
}//Lattice::getHamiltonian
int Lattice::getMagnetisation(){
return magnetisation;
}//Lattice::getMagnetisation
double Lattice::getTemperature(){
return 1/beta;
}//Lattice::getTemperature
void Lattice::setTemperature(double temperature){
beta=1/temperature;
probabilityWolff=1-exp(-2*beta*J);
}//Lattice::setTemperature
double Lattice::computeHamiltonianDifference(int i, int j, int k){
return(2*J*grid[i][j][k]*(grid[(i+1)%SIZE][j][k]+grid[i][(j+1)%SIZE][k]+grid[i][j][(k+1)%SIZE]+
grid[(SIZE+i-1)%SIZE][j][k]+grid[i][(SIZE+j-1)%SIZE][k]+grid[i][j][(SIZE+k-1)%SIZE])+2*B*grid[i][j][k]);
}//Lattice::computeHamiltonianDifference
void Lattice::doTimestep(){
int i, j, k;
i=rand()%SIZE;
j=rand()%SIZE;
k=rand()%SIZE;
double randomUniform=rand();
double difference=computeHamiltonianDifference(i, j, k);
if((difference<0) or (randomUniform/RAND_MAX < exp(-beta*(difference)))){
hamiltonian+=difference;
magnetisation-=2*grid[i][j][k];
grid[i][j][k]=-grid[i][j][k];
}
}//Lattice::doTimestep
void Lattice::doWolffRecursion(int i, int j, int k){
double difference=computeHamiltonianDifference(i, j, k);
double random1, random2, random3, random4, random5, random6;
hamiltonian+=difference;
magnetisation-=2*grid[i][j][k];
grid[i][j][k]=-grid[i][j][k];
random1=rand();
random2=rand();
random3=rand();
random4=rand();
random5=rand();
random6=rand();
if((grid[(i+1)%SIZE][j][k]==-grid[i][j][k]) and (random1/RAND_MAX<probabilityWolff)){
doWolffRecursion((i+1)%SIZE, j, k);
}
if((grid[i][(j+1)%SIZE][k]==-grid[i][j][k]) and (random2/RAND_MAX<probabilityWolff)){
doWolffRecursion(i, (j+1)%SIZE, k);
}
if((grid[i][j][(k+1)%SIZE]==-grid[i][j][k]) and (random3/RAND_MAX<probabilityWolff)){
doWolffRecursion(i, j, (k+1)%SIZE);
}
if((grid[(SIZE+i-1)%SIZE][j][k]==-grid[i][j][k]) and (random4/RAND_MAX<probabilityWolff)){
doWolffRecursion((SIZE+i-1)%SIZE, j, k);
}
if((grid[i][(SIZE+j-1)%SIZE][k]==-grid[i][j][k]) and (random5/RAND_MAX<probabilityWolff)){
doWolffRecursion(i, (SIZE+j-1)%SIZE, k);
}
if((grid[i][j][(SIZE+k-1)%SIZE]==-grid[i][j][k]) and (random6/RAND_MAX<probabilityWolff)){
doWolffRecursion(i, j, (SIZE+k-1)%SIZE);
}
}//Lattice::doWolfRecursion
void Lattice::doWolffTimestep(){
int i, j, k;
i=rand()%SIZE;
j=rand()%SIZE;
k=rand()%SIZE;
doWolffRecursion(i, j, k);
}//Lattice::doWolffTimestep
void Lattice::thermalize(){
int nSwitchPositiveHamiltonian=0, nSwitchNegativeHamiltonian=0,
nSwitchPositiveMagnetisation=0, nSwitchNegativeMagnetisation=0, i=0;
Lattice positiveModel, negativeModel;
negativeModel.configureNegative();
positiveModel.setTemperature(getTemperature());
negativeModel.setTemperature(getTemperature());
configureRandomly();
//The model is thermalized if all three models reach similar energy levels.
while(nSwitchPositiveHamiltonian<500 or nSwitchNegativeHamiltonian<500 or
nSwitchPositiveMagnetisation<500 or nSwitchNegativeMagnetisation<500){
i++;
if(USE_WOLFF){
doWolffTimestep();
positiveModel.doWolffTimestep();
negativeModel.doWolffTimestep();
}
else{
doTimestep();
positiveModel.doTimestep();
negativeModel.doTimestep();
}
if(pow(-1.0,nSwitchPositiveHamiltonian)*(getHamiltonian()-positiveModel.getHamiltonian())>=0){
nSwitchPositiveHamiltonian++;
}
if(pow(-1.0,nSwitchNegativeHamiltonian)*(getHamiltonian()-negativeModel.getHamiltonian())>=0){
nSwitchNegativeHamiltonian++;
}
if(pow(-1.0,nSwitchPositiveMagnetisation)*(abs(getMagnetisation())-abs(positiveModel.getMagnetisation()))>=0){
nSwitchPositiveMagnetisation++;
}
if(pow(-1.0,nSwitchNegativeHamiltonian)*(abs(getMagnetisation())-abs(negativeModel.getMagnetisation()))>=0){
nSwitchNegativeMagnetisation++;
}
}
}//Lattice::thermalize
int main(){
srand(time(NULL));
int stepSize=pow(SIZE,3);
int nTemperatureSteps=(STOP_TEMPERATURE-START_TEMPERATURE)/TEMPERATURE_STEP_SIZE;
Lattice model;
model.configureRandomly();
model.thermalize();
ofstream output("data.txt");
output <<"Temperature, Energy, Magnetisation\n";
for(int k=1;k<=nTemperatureSteps;k++){
for(int i=1;i<=NSTEPS;i++){
output <<model.getTemperature()<<", "
<<model.getHamiltonian()<<", "<<model.getMagnetisation()<<"\n";
if(USE_WOLFF){
model.doWolffTimestep();
}
else{
for(int j=1;j<=stepSize;j++){
model.doTimestep();
}
}
}
model.setTemperature(model.getTemperature()+TEMPERATURE_STEP_SIZE);
model.thermalize();
}
output.close();
return 0;
}//main