function c = pdf_MF_normal_approx(s,type_approx,bool_scaled) %pdf_MF_normal_approx: the approximated normalizing constant for the matrix Fisher distribution %on SO(3) % c = pdf_MF_normal_approx(s) is the approximated normalizing constant for the % matrix Fisher distribution on SO(3), for a given 3x1 (or 1x3) proper singular % values s. % % c = pdf_MF_normal(s,TYPE_APPROX) returns the value % specified by TYPE_APPROX: % 0 - approximation by almost uniform distribuitons when s is small % 1 - approximaiton by highly concentraed distributions when s_i+s_j % is large % % c = pdf_MF_normal(s,TYPE_APPROX,BOOL_SCALED) returns the scaled value % depending on BOOL_SCALED: % 0 - (default) is the same as pdf_MF_normal(s,TYPE_APPROX) % 1 - returnes an exponentially scaled normlaizing constant, % exp(-sum(s))*c % % See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher % Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746, % also T. Lee, "Bayesian Attitude Estimation with Approximate Matrix % Fisher Distributions on SO(3)", 2018 % % See also PDF_MF_NORMAL assert(or(min(size(s)==[1 3]),min(size(s)==[3 1])),'ERROR: s should be 3 by 1 or 1 by 3'); assert(or(type_approx==1,type_approx==0),'ERROR: type_approx should be 0 or 1'); % if bool_scaled is not defined, then set it false if nargin < 3 bool_scaled=false; end switch type_approx case 0 c=1+1/6*(s(1)^2+s(2)^2+s(3)^2)+1/6*s(1)*s(2)*s(3); if bool_scaled c=c/exp(sum(s)); end case 1 c=1/sqrt(8*pi*(s(1)+s(2))*(s(2)+s(3))*(s(3)+s(1))); if ~bool_scaled c=c*exp(sum(s)); end end