-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
67 lines (54 loc) · 2.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
import pickle
import pandas as pd
import requests
def fetch_poste(movie_id):
responce = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US'.format(movie_id))
data = responce.json()
return "https://image.tmdb.org/t/p/w500/" + data['poster_path']
#making recommend function
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0] #its function that find index value from table
distances = similarity[movie_index] #measuring distance of array
# For next step we sort the list with emurate function so it convert with tuple
# Then it will reverse the list and then its will give 5 simmilar cordinate suggestion using lambda function
movies_list = sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:6]
recommended_movie = []
recommended_movie_posters = []
for i in movies_list:
#now we are try to fetch the poster of movie with movie id
movie_id = movies.iloc[i[0]].movie_id
recommended_movie.append(movies.iloc[i[0]].title)
#fetch poster from API
recommended_movie_posters.append(fetch_poste(movie_id))
return recommended_movie,recommended_movie_posters
# assign .pkl file to the frontend to show the list of titles of movies
movies_dict = pickle.load(open('movie_dict.pkl','rb'))
movies = pd.DataFrame(movies_dict)
#import statemnt for similarity
similarity = pickle.load(open('similarity.pkl','rb'))
# main heading for project
st.title('Movie Recommender System')
#creataing a search and selectbox two in one
selected_movie_name = st.selectbox(
'How Would you like to be contacted?',
movies['title'].values)
# adding button to the screen
if st.button('Recommend'):
names,posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(names[0])
st.image(posters[0])
with col2:
st.text(names[1])
st.image(posters[1])
with col3:
st.text(names[2])
st.image(posters[2])
with col4:
st.text(names[3])
st.image(posters[3])
with col5:
st.text(names[4])
st.image(posters[4])