-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_to_heads.py
98 lines (78 loc) · 3.91 KB
/
convert_to_heads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
from collections import defaultdict
import logging
import os
from typing import Tuple
import jsonlines
DATA_DIR = "data"
FILENAME = "{}_{}_{}{}.jsonlines"
LOGGING_LEVEL = logging.WARNING # DEBUG to output all duplicate spans
SPLITS = ("development", "test", "train")
def get_head(mention: Tuple[int, int], doc: dict) -> int:
"""Returns the span's head, which is defined as the only word within the
span whose head is outside of the span or None. In case there are no or
several such words, the rightmost word is returned
Args:
mention (Tuple[int, int]): start and end (exclusive) of a span
doc (dict): the document data
Returns:
int: word id of the spans' head
"""
head_candidates = set()
start, end = mention
for i in range(start, end):
ith_head = doc["head"][i]
if ith_head is None or not (start <= ith_head < end):
head_candidates.add(i)
if len(head_candidates) == 1:
return head_candidates.pop()
return end - 1
if __name__ == "__main__":
logging.basicConfig(level=LOGGING_LEVEL)
path = os.path.join(DATA_DIR, FILENAME)
argparser = argparse.ArgumentParser(
description="Converts from spans to heads.")
argparser.add_argument("--lang", help="The language of the dataset", default="english")
argparser.add_argument("--dataset", default="ontonotes", help="Name of the datset.")
args = argparser.parse_args()
for split in SPLITS:
with jsonlines.open(path.format(args.dataset, args.lang, split, ""), mode="r") as inf:
with jsonlines.open(path.format(args.dataset, args.lang, split, "_head"), mode="w") as outf:
deleted_spans = 0
deleted_clusters = 0
total_spans = 0
total_clusters = 0
for doc in inf:
total_spans += sum(len(cluster) for cluster in doc["clusters"])
total_clusters += len(doc["clusters"])
head_clusters = [
[get_head(mention, doc) for mention in cluster]
for cluster in doc["clusters"]
]
# check for duplicates
head2spans = defaultdict(list)
for cluster, head_cluster in zip(doc["clusters"], head_clusters):
for span, span_head in zip(cluster, head_cluster):
head2spans[span_head].append((span, head_cluster))
doc["head2span"] = []
for head, spans in head2spans.items():
spans.sort(key=lambda x: x[0][1] - x[0][0]) # shortest spans first
doc["head2span"].append((head, *spans[0][0]))
if len(spans) > 1:
logging.debug(f'{split} {doc["document_id"]} {doc["cased_words"][head]}')
for span, cluster in spans:
logging.debug(f'{id(cluster)} {" ".join(doc["cased_words"][slice(*span)])}')
logging.debug("=====")
for _, cluster in spans[1:]:
cluster.remove(head)
deleted_spans += 1
filtered_head_clusters = [cluster for cluster in head_clusters if len(cluster) > 1]
deleted_clusters += len(head_clusters) - len(filtered_head_clusters)
doc["word_clusters"] = filtered_head_clusters
doc["span_clusters"] = doc["clusters"]
del doc["clusters"]
outf.write(doc)
print(f"Deleted in {split}:"
f"\n\t{deleted_spans}/{total_spans} ({deleted_spans/total_spans:.2%}) spans"
f"\n\t{deleted_clusters}/{total_clusters} ({deleted_clusters/total_clusters:.2%}) clusters"
f"\n")