-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_modified.py
246 lines (204 loc) · 10.1 KB
/
predict_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import itertools
import jsonlines
import torch
from tqdm import tqdm
import conll_eval
from coref.coref_model2 import CorefModel as CorefModel
from coref.tokenizer_customization import *
from coref import bert, conll, utils
# usage : python predict_modified.py roberta litbank_splitted/jsonlines/english_test_head.jsonlines
# pred.conll and gold.conll files written in the data/conll_logs dir, model wts loaded from data/
# the unsplitted doc .jsonlines should be in the data/ dir
def build_cluster_emb(doc1, doc2, clusters, offset):
# offset is 0 for doc1, doc2
# offset is len*word1 + lenword2
words_emb1 = doc1["words_emb"]
words_emb2 = doc2["words_emb"]
word_emb = torch.cat((words_emb1, words_emb2), 0)
# task : see the wordsemb1 type
cluster_emb = []
for cluster in clusters:
cluster_i = []
for span in cluster:
span_embedding = None
start, end = span
start -= offset
end -= offset
for i in range(start, end):
if(span_embedding == None):
span_embedding = word_emb[i]
else:
span_embedding += word_emb[i]
span_embedding /= (end - start)
cluster_i.append(span_embedding)
cluster_i = torch.stack(cluster_i)
cluster_i = torch.mean(cluster_i, dim=0)
cluster_emb.append(cluster_i)
return cluster_emb, word_emb
def build_doc(doc: dict, model: CorefModel) -> dict:
filter_func = TOKENIZER_FILTERS.get(model.config.bert_model,
lambda _: True)
token_map = TOKENIZER_MAPS.get(model.config.bert_model, {})
word2subword = []
subwords = []
word_id = []
for i, word in enumerate(doc["cased_words"]):
tokenized_word = (token_map[word]
if word in token_map
else model.tokenizer.tokenize(word))
tokenized_word = list(filter(filter_func, tokenized_word))
word2subword.append((len(subwords), len(subwords) + len(tokenized_word)))
subwords.extend(tokenized_word)
word_id.extend([i] * len(tokenized_word))
doc["word2subword"] = word2subword
doc["subwords"] = subwords
doc["word_id"] = word_id
doc["head2span"] = []
if "speaker" not in doc:
doc["speaker"] = ["_" for _ in doc["cased_words"]]
doc["word_clusters"] = []
doc["span_clusters"] = []
doc["cluster_emb"] = []
doc["span_clusters_res"] = []
return doc
def add_cluster_embeddings_to_docs(model, docs):
# building the cluster embeddings
with torch.no_grad():
for doc in tqdm(docs, unit="docs"):
result, word_emb = model.run(doc)
doc['cluster_emb'] = []
doc["words_emb"] = word_emb
doc["span_clusters_res"] = result.span_clusters
doc["word_clusters"] = result.word_clusters
clusters = doc["span_clusters_res"]
for cluster in clusters:
# you have to set a offset
cluster_i = []
for span in cluster:
span_embedding = None
start, end = span
for i in range(start, end):
if(span_embedding == None):
span_embedding = word_emb[i]
else:
span_embedding += word_emb[i]
span_embedding /= (end - start)
cluster_i.append(span_embedding)
cluster_i = torch.stack(cluster_i)
cluster_i = torch.mean(cluster_i, dim=0)
doc['cluster_emb'].append(cluster_i)
def merge_two_docs(doc1, doc2, new_name, merge=True):
doc1 = build_doc(doc1, model)
doc2 = build_doc(doc2, model)
add_cluster_embeddings_to_docs(model, [doc1, doc2])
span_clusters_mapping = {}
cluster_emb1 = doc1['cluster_emb']
clusters1 = doc1['span_clusters_res']
cluster_emb2 = doc2['cluster_emb']
clusters2 = doc2['span_clusters_res']
offset = len(doc1['cased_words'])
clusters2 = [[(start + offset, end + offset) for start, end in tuple_list] for tuple_list in clusters2]
cluster_emb_merged = torch.stack(cluster_emb1 + cluster_emb2)
cluster_emb_merged = cluster_emb_merged.to('cuda')
for i, cluster in enumerate(clusters1 + clusters2):
span_clusters_mapping[i] = cluster #List[Tuple[int, int]]
combined_span_clusters = []
if merge:
res = model_merging.run2(cluster_emb_merged)
#mapping the indexes to the actual clusters of spans
for second_lvl_clusters in res.word_clusters:
combined_span_clusters_i = []
for x in second_lvl_clusters:
combined_span_clusters_i += span_clusters_mapping[x]
combined_span_clusters.append(sorted(combined_span_clusters_i))
cluster_emb, words_emb = build_cluster_emb(doc1, doc2, clusters1 + clusters2, 0)
new_doc = {
"document_id": new_name,
"words_emb": words_emb,
"cased_words": doc1["cased_words"] + doc2["cased_words"],
"sent_id": doc1["sent_id"] + [i + doc1["sent_id"][-1] for i in doc2["sent_id"]],
"part_id": doc1["part_id"],
"speaker": doc1["speaker"] + doc2["speaker"],
"pos": doc1["pos"] + doc2["pos"],
"deprel": doc1["deprel"] + doc2["deprel"],
"head": doc1["head"] + [h + len(doc1["head"]) if h is not None else None for h in doc2["head"]],
"word_clusters": None,
"span_clusters": None,
"cluster_emb": cluster_emb,
"span_clusters_res": combined_span_clusters if merge else clusters1 + clusters2,
}
return new_doc
def pairs(iterable, n=2):
args = [iter(iterable)] * n
return zip(*args, strict=True)
def merge_matching_names(docs, merge=True):
docs_new = {} #mapping for doc name to span clusters obtained after merging
grouped_docs = itertools.groupby(docs, key=lambda d: d["document_id"].rsplit("_", 1)[0])
grouped_docs = {key: list(value) for key, value in grouped_docs}
grouped_names = {key: [v["document_id"] for v in value] for key, value in grouped_docs.items()}
for doc_id, to_merge in grouped_docs.items():
while len(to_merge) > 1:
with torch.no_grad():
to_merge = [merge_two_docs(a, b, doc_id, merge) for a, b in pairs(to_merge)]
docs_new[doc_id] = to_merge[0]
print(doc_id, len(to_merge))
return docs_new
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument("experiment")
argparser.add_argument("input_file")
# argparser.add_argument("output_file")
argparser.add_argument("--config-file", default="config.toml")
argparser.add_argument("--batch-size", type=int,
help="Adjust to override the config value if you're"
" experiencing out-of-memory issues")
argparser.add_argument("--no-merge", action="store_true")
argparser.add_argument("--final-docs", default=None, type=str)
argparser.add_argument("--weights",
help="Path to file with weights to load."
" If not supplied, in the latest"
" weights of the experiment will be loaded;"
" if there aren't any, an error is raised.")
argparser.add_argument("--weights-merging",
help="Path to file with weights to load for merging."
" If not supplied, in the latest"
" weights of the experiment will be loaded;"
" if there aren't any, an error is raised.")
args = argparser.parse_args()
model = CorefModel(args.config_file, args.experiment)
model_merging = CorefModel(args.config_file, args.experiment)
if args.batch_size:
model.config.a_scoring_batch_size = args.batch_size
model.load_weights(path=args.weights, map_location="cpu",
ignore={"bert_optimizer", "general_optimizer",
"bert_scheduler", "general_scheduler"})
model.training = False
model_merging.load_weights(path=args.weights_merging or args.weights, map_location="cpu",
ignore={"bert_optimizer", "general_optimizer",
"bert_scheduler", "general_scheduler"})
model_merging.training = False
with jsonlines.open(args.input_file, mode="r") as input_data:
docs = [build_doc(doc, model) for doc in input_data]
add_cluster_embeddings_to_docs(model, docs)
# with jsonlines.open(args.output_file, mode="w") as output_data:
# output_data.write_all(docs_new)
docs_new = merge_matching_names(docs, not args.no_merge)
data_split = 'test'
docs_location = args.final_docs or model.config.__dict__[f"{data_split}_data"]
print("Loading docs from", docs_location)
docs = model._get_docs(docs_location) # from the head.jsonlines, because they contain 'span_clusters' not the other .jsonlines which contains the 'clusters'
# span clusters are formed after you run the convert_to_heads.py -- which are : clusters - some deleted clusters
with conll.open_(model.config, model.epochs_trained, data_split) \
as (gold_f, pred_f):
pbar = tqdm(docs, unit="docs", ncols=0)
for doc in pbar:
doc_id = doc['document_id']
pred_span_clusters = docs_new[doc_id]["span_clusters_res"]
conll.write_conll(doc, doc["span_clusters"], gold_f)
# remove singletons using ./coref-toolkit mod --strip-singletons data/conll_logs/roberta_test_e30.gold.conll > data/conll_logs/roberta_test_e30_x.gold.conll
# then rename it back
conll.write_conll(doc, pred_span_clusters, pred_f) # will be written in data/conll_logs/ dir
# to eval : python calculate_conll.py roberta test 30[no of epochs]
names = gold_f.name, pred_f.name
conll_eval.main(*names)