-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
211 lines (184 loc) · 7.06 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import streamlit as st
import time
from prd_epic import start_prd_to_epic_conversion
from epic_feature import start_epic_to_feature_conversion
from feature_user import start_feature_to_userstory_conversion
import re
import os
import io
import fitz
from dotenv import load_dotenv
from langtrace_python_sdk import langtrace
from PIL import Image
import tempfile
import requests
from requests.auth import HTTPBasicAuth
import json
import os
load_dotenv()
#Fill in your domain url before running
url = "https://<YOUR_DOMAIN>/rest/api/3/issue"
#Enter your personal email and your API key here
auth = HTTPBasicAuth("<YOUR_EMAIL>", os.getenv("JIRA_API_KEY"))
headers = {
"Accept": "application/json",
"Content-Type": "application/json"
}
#Function extracts Pictures, Tables and Texts
def extract_media_from_document(file_path: str):
''' Extracts texts, tables and images from a pdf document'''
save_path = os.path.join(os.getcwd(), "media")
if not os.path.exists(save_path):
os.makedirs(save_path)
data = {'images': [], 'tables': [], 'texts': []}
print(file_path)
pdf_file = fitz.open(file_path)
file_id = 0
# iterate over PDF pages
for page_index in range(len(pdf_file)):
# get the page itself
page = pdf_file[page_index]
# FIND IMAGES
if 'imgs' not in os.listdir(save_path):
os.mkdir(os.path.join(save_path, 'imgs'))
for image_index, img in enumerate(page.get_images(full=True), start=1):
try:
pix1 = fitz.Pixmap(pdf_file.extract_image(img[0])["image"])
mask = fitz.Pixmap(pdf_file.extract_image(img[1])["image"])
pix = fitz.Pixmap(pix1, mask)
im = Image.open(io.BytesIO(pix.tobytes()))
except:
pix = pdf_file.extract_image(img[0])["image"]
im = Image.open(io.BytesIO(pix))
# Save Images
img_path = os.path.join(save_path, f"imgs/{page_index}_{file_id}.png")
im.save(img_path)
data['images'].append(img_path)
file_id += 1
# FIND TABLES
tabs = page.find_tables()
if tabs.tables:
table = tabs[0].extract()
data['tables'].append({'table': table, 'page_no': page_index})
# FIND TEXTS
data['texts'].append({'text': page.get_text(), 'page_no': page_index})
print(f"Found {len(data['texts'])} page(s), {len(data['images'])} image(s) and {len(data['tables'])} table(s).")
return data
#Function to parse output from Markdown format to a normal text format
def parse_user_stories(text):
features = {}
current_feature = None
additional_stories = []
lines = text.split('\n')
for line in lines:
line = line.strip()
# Check for feature
feature_match = re.match(r'^### Feature: "(.*?)"$', line)
if feature_match:
current_feature = feature_match.group(1)
features[current_feature] = []
continue
# Check for user story
user_story_match = re.match(r'^- \*\*User Story \d+:\*\* (.+)$', line)
if user_story_match and current_feature:
user_story = user_story_match.group(1)
features[current_feature].append(user_story)
continue
# Check for acceptance criteria
acceptance_criteria_match = re.match(r'^ - \*Acceptance Criteria:\*$', line)
if acceptance_criteria_match and current_feature and features[current_feature]:
features[current_feature][-1] += " (Acceptance Criteria follow)"
continue
# Check for additional user stories
if current_feature == "Additional User Stories":
additional_story_match = re.match(r'^- \*\*User Story \d+:\*\* (.+)$', line)
if additional_story_match:
additional_stories.append(additional_story_match.group(1))
# Add additional user stories to the features dictionary
if additional_stories:
features["Additional User Stories"] = additional_stories
return features
#Function which sends each User story to Jira (Before running update "key":AA,AT or whatever the key exists for your project)(Also update "issuetype": 10002 or the number shown on Jira issue filter)
def post_jira(story,user_no):
payload = json.dumps( {
"fields": {
"description": {
"content": [
{
"content": [
{
"text": story,
"type": "text"
}
],
"type": "paragraph"
}
],
"type": "doc",
"version": 1
},
"issuetype": { #update here
"id": "10012"
},
"project": { #update here
"key": "AT"
},
"summary": "User story - "+str(user_no),
},
"update": {}
} )
response = requests.request(
"POST",
url,
data=payload,
headers=headers,
auth=auth
)
print(json.dumps(json.loads(response.text), sort_keys=True, indent=4, separators=(",", ": ")))
st.title("Autogen PRD to User")
#Form for upload
with st.form("prd_upload_form"):
read_pdf = st.file_uploader("Upload Product Requirement Document here", type="pdf")
prd=""
submit_button = st.form_submit_button("Convert2UserStory")
#On submission of the form
if submit_button:
if read_pdf is not None:
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(read_pdf.getvalue())
tmp_file_path = tmp_file.name
#Reading the PDF
all_data = extract_media_from_document(tmp_file_path)
for text_entry in all_data["texts"]:
prd+=text_entry["text"]
#Starting prd to user conversion agents
epics = start_prd_to_epic_conversion(prd)
time.sleep(4)
st.write(epics.chat_history[-2]["content"])
features = start_epic_to_feature_conversion(epics.chat_history[-2]["content"])
time.sleep(4)
st.write(features.chat_history[-1]["content"])
user_stories=start_feature_to_userstory_conversion(features.chat_history[-1]["content"])
time.sleep(4)
#User story list
st.write(user_stories.chat_history[-1]["content"])
#parsing user stories
st.write("The Parsed Contents are Uploaded to Jira: ")
parsed_features = parse_user_stories(user_stories.chat_history[-1]["content"])
#Uploading to Jira
if isinstance(parsed_features, dict) and parsed_features:
user=0
for feature, user_stories in parsed_features.items():
st.write(f"Feature: {feature}")
for story in user_stories:
st.write(f" - {story}")
user+=1
post_jira(story,user)
st.write()
else:
print("No valid features found in the input text.")
print("Parsed content:", parsed_features)
st.write("The stories have been uploaded to Jira successfully")
else:
st.error("Please upload a PDF file before converting.")