-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
390 lines (346 loc) · 15.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
#from paddle.vision.models.resnet import resnet18, resnet50
from k_center_greedy import KCenterGreedy
from net import resnet18, resnet50, wide_resnet50_2
from scipy.ndimage import gaussian_filter
from utils import cdist, cholesky_inverse, mahalanobis, mahalanobis_einsum, orthogonal, svd_orthogonal
from tqdm import tqdm
models = {"resnet18":resnet18,"resnet50":resnet50,
#"resnet18_vd":resnet18_vd,
"wide_resnet50_2":wide_resnet50_2,}
fins = {"resnet18":448,"resnet50":1792,
"resnet18_vd":448,"wide_resnet50_2":1792,}
def get_projection(fin, fout, method='ortho'):
if 'sample' == method:
W = paddle.randperm(fin)[:fout]
#W = paddle.eye(fin)[W.tolist()].T
elif 'coreset' == method:
W = None
elif 'h_sample' == method:
s = paddle.randperm(fin//7)[:fout//3].tolist()\
+(fin//7+paddle.randperm(fin//7*2)[:fout//3]).tolist()\
+(fin//7*3+paddle.randperm(fin//7*4)[:(fout-fout//3*2)]).tolist()
W = paddle.eye(fin)[s].T
elif 'ortho' == method:
W = orthogonal(fin, fout)
elif 'svd_ortho' == method:
W = svd_orthogonal(fin, fout)
elif 'gaussian' == method:
W = paddle.randn(fin, fout)
return W
class PaDiMPlus(nn.Layer):
def __init__(self, arch='resnet18', pretrained=True, k=100, method = 'sample'):
super().__init__()
if isinstance(arch, type(None)) or isinstance(pretrained, type(None)):
self.model = None
print('Inference mode')
else:
assert arch in models.keys(), 'arch {} not supported'.format(arch)
self.model = models[arch](pretrained)
del self.model.layer4, self.model.fc , self.model.avgpool
self.model.eval()
print(f'model {arch}, nParams {sum([w.size for w in self.model.parameters()])}')
self.arch = arch
self.method = method
self.fin = fins[arch]
self.k = k
self.projection = None
self.reset_stats()
def init_projection(self):
self.projection = get_projection(fins[self.arch], self.k, self.method)
def load(self, state):
self.mean = state['mean']
self.inv_covariance = state['inv_covariance']
self.projection = state['projection']
def reset_stats(self, set_None=True):
if set_None:
self.mean = None
self.inv_covariance = None
else:
self.mean = paddle.zeros_like(self.mean)
self.inv_covariance = paddle.zeros_like(self.inv_covariance)
def set_dist_params(self, mean, inv_cov):
self.mean, self.inv_covariance = mean, inv_cov
@paddle.no_grad()
def project_einsum(self, x):
return paddle.einsum('bchw, cd -> bdhw', x, self.projection)
#if self.method == 'ortho':
# return paddle.einsum('bchw, cd -> bdhw', x, self.projection)
#else: #self.method == 'PaDiM':
# return paddle.index_select(embedding, self.projection, 1)
@paddle.no_grad()
def project(self, x, return_HWBC=False):
if isinstance(self.projection, type(None)):
return x.transpose((2,3,0,1)) if return_HWBC else x
B, C, H, W = x.shape
if len(self.projection.shape)==1:
x=paddle.index_select(x, self.projection, 1)
if return_HWBC: x = x.transpose((2,3,0,1))
return x
else:
if return_HWBC:
x = x.transpose((2,3,0,1))
return x@self.projection
result = []#paddle.zeros((B, self.k, H, W))
for i in range(H):
#result[i] = paddle.einsum('chw, cd -> dhw', x[i], self.projection)
#result[i,:,:,:] = x[i] @self.projection.T
result.append(x[i] @self.projection.T)
result = paddle.stack(result)
return result
result = [] #paddle.zeros((B, self.k, H, W))
x = x.reshape((B, C, H*W))
for i in range(B):
#result[i] = paddle.einsum('chw, cd -> dhw', x[i], self.projection)
#result[i] = (self.projection.T @ x[i]).reshape((self.k, H, W))
result.append((self.projection.T @ x[i]).reshape((self.k, H, W)))
result = paddle.stack(result)
return result
@paddle.no_grad()
def forward_res(self, x):
res = []
with paddle.no_grad():
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
res.append(x)
x = self.model.layer2(x)
res.append(x)
x = self.model.layer3(x)
res.append(x)
return res
@paddle.no_grad()
def forward(self, x):
res = []
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
res.append(x)
x = self.model.layer2(x)
res.append(x)
x = self.model.layer3(x)
res.append(x)
x = res
for i in range(1,len(x)):
x[i] = F.interpolate(x[i], scale_factor=2**i, mode="nearest")
#print([i.shape for i in x])
x = paddle.concat(x, 1)
#x = self.project(x)
return x
@paddle.no_grad()
def forward_score(self, x):
return self.generate_scores_map(self.get_embedding(x), x.shape)
@paddle.no_grad()
def compute_stats_einsum(self, outs):
# calculate multivariate Gaussian distribution
B, C, H, W = outs.shape
mean = outs.mean(0) # mean chw
outs-= mean
cov = paddle.einsum('bchw, bdhw -> hwcd', outs, outs)/(B-1) # covariance hwcc
self.compute_inv(mean, cov)
@paddle.no_grad()
def compute_stats_(self, embedding):
# calculate multivariate Gaussian distribution
B, C, H, W = embedding.shape
mean = paddle.mean(embedding, axis=0)
embedding = embedding.reshape((B, C, H * W))
cov = np.empty((C, C, H * W))
for i in tqdm(range(H * W)):
cov[:, :, i] = np.cov(embedding[:, :, i].numpy(), rowvar=False)
cov = paddle.to_tensor(cov.reshape(C,C,H,W).transpose((2,3, 0, 1)))
self.compute_inv(mean, cov)
@paddle.no_grad()
def compute_stats_np(self, embedding):
# calculate multivariate Gaussian distribution
B, C, H, W = embedding.shape
mean = paddle.mean(embedding, axis=0)
embedding = embedding.reshape((B, C, H * W)).numpy()
inv_covariance = np.empty((H * W, C, C), dtype='float32')
I = np.identity(C)
for i in tqdm(range(H * W)):
inv_covariance[i,:,:] = np.linalg.inv(np.cov(embedding[:, :, i], rowvar=False) + 0.01 * I)
inv_covariance = paddle.to_tensor(inv_covariance.reshape(H,W,C,C)).astype('float32')
self.set_dist_params(mean, inv_covariance)
@paddle.no_grad()
def compute_stats(self, embedding):
# calculate multivariate Gaussian distribution
B, C, H, W = embedding.shape
mean = paddle.mean(embedding, axis=0)
embedding -= mean
embedding = embedding.transpose((2, 3, 0, 1)) #hwbc
inv_covariance = []#paddle.zeros((H, W, C, C), dtype='float32')
I = paddle.eye(C)
for i in tqdm(range(H), desc='compute distribution stats'):
inv_covariance.append(paddle.einsum('wbc, wbd -> wcd',embedding[i],embedding[i])/(B-1) + 0.01*I)
inv_covariance[-1] = cholesky_inverse(inv_covariance[-1])#paddle.inverse(inv_covariance[-1])#
inv_covariance = paddle.stack(inv_covariance).reshape((H,W,C,C)).astype('float32')
self.set_dist_params(mean, inv_covariance)
@paddle.no_grad()
def compute_stats_incremental(self, out):
# calculate multivariate Gaussian distribution
H, W, B, C = out.shape
if isinstance(self.inv_covariance, type(None)):
self.mean = paddle.zeros((H, W, C), dtype='float32')
self.inv_covariance = paddle.zeros((H, W, C, C), dtype='float32')
self.mean += out.sum(2) # mean hwc
#cov = paddle.einsum('bchw, bdhw -> hwcd', outs, outs)# covariance hwcc
for i in range(H):
self.inv_covariance[i,:,:,:] += paddle.einsum('wbc, wbd -> wcd',out[i,:,:,:],out[i,:,:,:])
#return mean, cov, B
def compute_inv_incremental(self, B, eps=0.01):
c = self.mean.shape[0]
#if self.inv_covariance == None:
self.mean/=B # hwc
self.inv_covariance/=B
#covariance hwcc #.transpose((2,3, 0, 1)))
self.inv_covariance -= paddle.einsum('hwc, hwd -> hwcd', self.mean, self.mean)
#covariance = (covariance - B*paddle.einsum('chw, dhw -> hwcd', mean, mean))/(B-1)
self.compute_inv(self.mean.transpose((2,0,1)), self.inv_covariance, eps)
def compute_inv_(self,mean, covariance, eps=0.01):
c = mean.shape[0]
#if self.inv_covariance == None:
#covariance hwcc #.transpose((2,3, 0, 1)))
#self.inv_covariance = paddle.linalg.inv(covariance)
self.set_dist_params(mean, cholesky_inverse(covariance + eps * paddle.eye(c)))
def compute_inv(self,mean, covariance, eps=0.01):
c, H, W = mean.shape
for i in tqdm(range(H), desc='compute inverse covariance'):
covariance[i,:,:,:] = cholesky_inverse(covariance[i,:,:,:] + eps * paddle.eye(c))
self.set_dist_params(mean, covariance)
def generate_scores_map(self, embedding, out_shape, gaussian_blur = True):
# calculate distance matrix
#B, C, H, W = embedding.shape
#embedding = embedding.reshape((B, C, H * W))
# calculate mahalanobis distances
distances = mahalanobis_einsum(embedding, self.mean, self.inv_covariance)
score_map = postporcess_score_map(distances, out_shape, gaussian_blur)
img_score = score_map.reshape(score_map.shape[0], -1).max(axis=1)
return score_map, img_score
return
class PatchCore(PaDiMPlus):
def load(self, state):
self.memory_bank = state['memory_bank']
def clean_stats(self, set_None=True):
if set_None:
self.memory_bank = None
else:
self.memory_bank = paddle.zeros_like(self.memory_bank)
def set_dist_params(self, memory_bank):
self.memory_bank = memory_bank
@paddle.no_grad()
def forward_res(self, x):
res = []
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
res.append(F.avg_pool2d(x,3,1,1))
x = self.model.layer3(x)
res.append(F.avg_pool2d(x,3,1,1))
return res
@paddle.no_grad()
def forward(self, x):
pool = paddle.nn.AvgPool2D(3,1,1,exclusive=False)
res = []
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
res.append(pool(x))
x=self.model.layer3(x)
res.append(pool(x))
x = res
for i in range(1,len(x)):
x[i] = F.interpolate(x[i], scale_factor=2**i, mode="nearest")
#print([i.shape for i in x])
x = paddle.concat(x, 1)
#x = self.project(x)
return x
@paddle.no_grad()
def compute_stats(self, embedding):
C = embedding.shape[1]
embedding = embedding.transpose((0, 2, 3, 1)).reshape((-1, C))
print("Creating CoreSet Sampler via k-Center Greedy")
sampler = KCenterGreedy(embedding, sampling_ratio=self.k/100)
print("Getting the coreset from the main embedding.")
coreset = sampler.sample_coreset()
print(f"Assigning the coreset as the memory bank with shape {coreset.shape}.")#18032,384
self.memory_bank = coreset
def compute_stats_einsum(self, outs):
raise NotImplementedError
def compute_stats_incremental(self, out):
raise NotImplementedError
def compute_inv_incremental(self, B, eps=0.01):
raise NotImplementedError
def project(self, x, return_HWBC=False):
# no per project
return x #super().project(x, return_HWBC)
def generate_scores_map(self, embedding, out_shape, gaussian_blur = True):
#Nearest Neighbours distances
B, C, H, W = embedding.shape
embedding = embedding.transpose((0,2,3,1)).reshape((B, H*W, C))
distances = self.nearest_neighbors(embedding=embedding, n_neighbors=9)
distances = distances.transpose((2,0,1)) # n_neighbors, B, HW
image_score = []
for i in range(B):
image_score.append(self.compute_image_anomaly_score(distances[:,i,:]))
distances = distances[0, :, :].reshape((B,H,W))
score_map = postporcess_score_map(distances, out_shape, gaussian_blur)
return score_map, np.array(image_score)
def nearest_neighbors(self, embedding, n_neighbors: int = 9):
"""Compare embedding Features with the memory bank to get Nearest Neighbours distance
"""
B, HW, C = embedding.shape
n_coreset = self.memory_bank.shape[0]
distances = []#paddle.zeros((B, HW, n_coreset))
for i in range(B):
distances.append(cdist(embedding[i,:,:], self.memory_bank, p=2.0)) # euclidean norm
distances = paddle.stack(distances, 0)
distances, _ = distances.topk(k=n_neighbors, axis=-1, largest=False)
return distances #B,
@staticmethod
def compute_image_anomaly_score(distance):
"""Compute Image-Level Anomaly Score for one nearest_neighbor distance map.
"""
#distances[n_neighbors, B, HW]
max_scores = paddle.argmax(distance[0,:])
confidence = distance[:, max_scores]#paddle.index_select(distances, max_scores, -1)
weights = 1 - (paddle.max(paddle.exp(confidence)) / paddle.sum(paddle.exp(confidence)))
score = weights * paddle.max(distance[0,:])
return score.item()
def postporcess_score_map(distances, out_shape, gaussian_blur = True, mode='bilinear'):
score_map = F.interpolate(distances.unsqueeze_(1), size=out_shape, mode=mode,
align_corners=False).squeeze_(1).numpy()
if gaussian_blur:
# apply gaussian smoothing on the score map
for i in range(score_map.shape[0]):
score_map[i] = gaussian_filter(score_map[i], sigma=4)
return score_map
def get_model(method):
if 'coreset' == method:
return PatchCore
return PaDiMPlus
if __name__ == '__main__':
model = PaDiMPlus()
print(model)