-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
813 lines (611 loc) · 33.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
import torch
import pickle
import nltk
from nltk import ngrams
import os
from multiprocessing import Pool
import abc
from tqdm import tqdm
from pdb import set_trace
import hydra
import json
from transformers import GenerationConfig
from model import *
import wandb
import time
from sklearn.metrics import f1_score, roc_auc_score
from collections import Counter
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import pearsonr, ttest_ind
from model import create_tokenizer
from utils import set_random_seed
from trainer import *
from data_loader import *
from evaluator.CodeBLEU import calc_code_bleu
from huggingface_hub import login
from utils import aggregate_metrics
import warnings
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
def test_case_check():
prompt_df = pd.read_csv(os.path.join('test-case-query-results/prompt_concept_summary.csv'), on_bad_lines='warn')
all_good = prompt_df.loc[prompt_df['Test Case Status'] == 'All Good']
test_info_df = pd.read_csv(os.path.join('test-case-query-results/test_cases-1-26-24.csv'), on_bad_lines='skip')
coding_prompt_id = set(test_info_df['coding_prompt_id'].unique())
ls = [29, 37, 106, 236, 239, 240]
for i in ls:
coding_prompt_id.add(i)
coding_prompt_id = {int(item) for item in coding_prompt_id if not (isinstance(item, float) and np.isnan(item))}
sat_questions = dict(zip(all_good['ProblemID'], all_good['Requirement']))
sat_id = sat_questions.keys()
good_test_case = test_info_df[test_info_df['coding_prompt_id'].isin(sat_id)]
return sat_questions, good_test_case
def uniq_test_construct(good_test_case):
question_input_dict = {}
grouped = good_test_case.groupby('coding_prompt_id')
for name, group in grouped:
if name == 34 or name == 39 or name == 40:
inp = group['input'].tolist()
clean_input = [i.rstrip('"').replace('\\', '"') for i in inp]
question_input_dict[int(name)] = clean_input
else:
question_input_dict[int(name)] = group['input'].tolist()
return question_input_dict
def handle_uniq_test_exception(question_input_dict):
df_q37 = pd.read_csv(os.path.join('test-case-query-results/test_case_37.csv'), on_bad_lines='warn')
df_q37['total_input'] = df_q37[['input_1', 'input_2']].apply(lambda x: ', '.join(x[x.notnull()]).rstrip('"').replace('\\', ''), axis=1)
processed = df_q37['total_input'].tolist()
cleaned_37 = ['"'+i+'"' for i in processed]
question_input_dict[37] = cleaned_37
return question_input_dict
def evaluate(configs, now, test_set, lstm_inputs, tokenizer, device):
# TODO p2: add batch generation for GPT2 and assert outputs are equal to single generation (https://github.com/huggingface/transformers/pull/7552)
results = {}
lstm = None
if configs.save_model:
# Load best models
if configs.okt_model == 'codellama/CodeLlama-7b-Instruct-hf' or configs.okt_model == 'meta-llama/Meta-Llama-3-8B-Instruct' or configs.okt_model == 'Qwen/Qwen1.5-7B':
model = okt_model_init(configs, device, now, False, load_in_8bit=True)
linear = nn.Linear(configs.lstm_hid_dim, 4096).to(device)
else:
model = AutoModelForCausalLM.from_pretrained(os.path.join(configs.model_save_dir, now, 'model')).to(device)
linear = nn.Linear(configs.lstm_hid_dim, 768).to(device)
linear.load_state_dict(torch.load(os.path.join(configs.model_save_dir, now, 'linear')))
# ## Used for 20 epoch trained model
# linear = torch.load(os.path.join(configs.model_save_dir, now, 'linear'))
if configs.use_lstm:
# lstm = torch.load(os.path.join(configs.model_save_dir, now, 'lstm'))
lstm = create_lstm_model(configs, device)
lstm.load_state_dict(torch.load(os.path.join(configs.model_save_dir, now, 'lstm')))
else:
lstm, tokenizer, model, linear = create_okt_model(configs, device)
tokenizer.padding_side = 'left'
# Set model to eval mode
model.eval()
linear.eval()
if configs.use_lstm:
lstm.eval()
test_set = make_pytorch_dataset(test_set, None, do_lstm_dataset=False)
generated_codes = []
ground_truth_codes = []
prompts = []
students = []
# start = time.time()
for idx in tqdm(range(len(test_set)), desc="inference"):
generated_code, ground_truth_code, prompt, student = generate_code(test_set, lstm_inputs, tokenizer,
idx, model, lstm, linear, configs, device)
# generated_code, ground_truth_code = generate_without_knowledge_state(test_set, tokenizer, idx, model, configs, device)
generated_codes.append(generated_code)
# if idx < 5:
# print('Generated code:', generated_code)
# print('Ground_truth code:', ground_truth_code)
ground_truth_codes.append(ground_truth_code)
prompts.append(prompt)
students.append(student)
# end = time.time()
# print('Individual inference takes:', end - start)
## compute codebleu
codebleu_score, detailed_codebleu_score = compute_code_bleu(ground_truth_codes, generated_codes)
results['codebleu'] = codebleu_score
results['detailed_codebleu'] = detailed_codebleu_score
## compute diversity
metrics = {'dist_1': Distinct_N(1),
'dist_2': Distinct_N(2),
'dist_3': Distinct_N(3),
}
for i, (name, metric) in enumerate(metrics.items()):
metric_result = metric.compute_metric(generated_codes)
results[name] = metric_result
print(f"results: {results}")
## save results
results['generated_codes'] = generated_codes
results['ground_truth_codes'] = ground_truth_codes
results['prompts'] = prompts
results['students'] = students
if configs.save_model:
with open(os.path.join(configs.model_save_dir, now, 'eval_logs.pkl'), 'wb') as f:
pickle.dump(results, f)
with open(os.path.join(configs.model_save_dir, now, 'eval_logs.txt'), 'w') as f:
json.dump(results, f, indent=2)
# # # write results to wandb
# if configs.log_wandb:
# for idx, (k, v) in enumerate(results.items()):
# wandb.log({'metrics/test/generation_{}'.format(k): str(v)})
return results
# Added student to the return item, so that the generated code could match with their student for calculating test case score
def generate_code(test_set, lstm_inputs, tokenizer, idx, model, lstm, linear, configs, device):
# Get student knowledge state
student, step, prompt, code = test_set[idx]['SubjectID'], test_set[idx]['step'], test_set[idx]['next_prompt'], test_set[idx]['next_code']
ks = get_knowledge_states_for_generator(lstm, lstm_inputs, [student], [step], configs, device, generation=True)
# Get generator input
inputs = tokenizer(build_prompt_with_special_tokens(prompt, tokenizer, configs), return_tensors='pt')
if configs.okt_model != 'codellama/CodeLlama-7b-Instruct-hf' and configs.okt_model != 'meta-llama/Meta-Llama-3-8B-Instruct' and configs.okt_model != 'Qwen/Qwen1.5-7B':
inputs_embeds = model.transformer.wte(inputs['input_ids'].to(device))
else:
inputs_embeds = model.base_model.model.model.embed_tokens(inputs['input_ids'].to(device))
# Add linear transformation of student knowledge state with prompt tokens including delimiter ":" matching finetuning format
inputs_embeds = torch.add(inputs_embeds, linear(ks[0]))
# Generate student code by greedy decoding
config = GenerationConfig(max_new_tokens=configs.max_new_tokens, do_sample=False)
inputs_embeds = inputs_embeds.to(dtype=model.dtype, device=device)
attention_mask = inputs['attention_mask'].to(device=device, dtype=model.dtype)
# Set eos_token_id in generate() to tokenizer.eos_token_id manually for codeLlama and use terminaters for Llama-3
if configs.okt_model == 'meta-llama/Meta-Llama-3-8B-Instruct':
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
outputs = model.generate(inputs_embeds=inputs_embeds, max_new_tokens=configs.max_new_tokens, do_sample=False, generation_config=config, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id, eos_token_id=terminators, attention_mask=attention_mask)
else:
outputs = model.generate(inputs_embeds=inputs_embeds, max_new_tokens=configs.max_new_tokens, do_sample=False, generation_config=config, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, attention_mask=attention_mask)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_code.strip(), code.strip(), prompt, student
def eval_student(configs, now, test_set, dataset, tokenizer, device):
results = {}
lstm = None
predictor = None
if configs.save_model:
if configs.okt_model == 'codellama/CodeLlama-7b-Instruct-hf' or configs.okt_model == 'meta-llama/Meta-Llama-3-8B-Instruct' or configs.okt_model == 'Qwen/Qwen1.5-7B':
model = okt_model_init(configs, device, now, False, load_in_8bit=True)
# linear = nn.Linear(configs.lstm_hid_dim, 4096).to(device)
linear = nn.Sequential(
nn.Linear(configs.lstm_hid_dim, 1600),
nn.ReLU(),
nn.Linear(1600, 4096)
).to(device)
else:
model = AutoModelForCausalLM.from_pretrained(os.path.join(configs.model_save_dir, now, 'model')).to(device)
linear = nn.Linear(configs.lstm_hid_dim, 768).to(device)
linear.load_state_dict(torch.load(os.path.join(configs.model_save_dir, now, 'linear')))
if configs.use_lstm:
lstm = create_lstm_model(configs, device)
lstm.load_state_dict(torch.load(os.path.join(configs.model_save_dir, now, 'lstm')))
if configs.multitask:
if configs.multitask_label != 'granular':
predictor = create_multitask_predictor(configs, device)
predictor.load_state_dict(torch.load(os.path.join(configs.model_save_dir, now, 'predictor')))
else:
predictor = torch.load(os.path.join(configs.model_save_dir, now, 'predictor.pth'))
else:
lstm, tokenizer, model, linear = create_okt_model(configs, device)
if configs.multitask:
if configs.multitask_label != 'granular':
predictor = create_multitask_predictor(configs, device)
else:
predictor = create_granular_model(configs, device)
tokenizer.padding_side = 'left'
# Set model to eval mode
model.eval()
linear.eval()
if configs.use_lstm:
lstm.eval()
granular = False
question_input_dict = None
question_no_map = None
if configs.multitask_label == 'granular':
granular = True
_, good_test_case = test_case_check()
question_input_dict = uniq_test_construct(good_test_case)
question_input_dict = handle_uniq_test_exception(question_input_dict)
question_ids = [1, 3, 5, 12, 13, 17, 20, 21, 22, 24, 25, 34, 37, 39, 40, 46, 71]
question_no_map = {question_ids[i]:i for i in range(len(question_ids))}
collate_fn = CollateForOKTstudent(tokenizer=tokenizer, configs=configs, device=device, eval=True, question_test_dict=question_input_dict, question_no_map=question_no_map)
_, test_loader = make_dataloader(test_set, dataset, collate_fn=collate_fn, configs=configs, do_lstm_dataset=True,
train=False, split_by_student=True, granular=granular, okt_model=True)
generated_code_total, gt_code_total, prompt_total, pred_score_total, gt_score_total, pred_label_total, student_total = [], [], [], [], [], [], []
for idx, batch in enumerate(tqdm(test_loader, desc="inference", leave=False)):
if configs.multitask:
if configs.multitask_label == 'granular':
generated_code_ls, gt_code_ls, prompt_ls, pred_score_ls, gt_score_ls, pred_label_ls, student_ls = generate_code_student(batch, tokenizer, model, lstm, linear, configs, device, predict_linear=predictor)
pred_label_total.append(pred_label_ls)
else:
generated_code_ls, gt_code_ls, prompt_ls, pred_score_ls, gt_score_ls, student_ls = generate_code_student(batch, tokenizer, model, lstm, linear, configs, device, predict_linear=predictor)
pred_score_total.append(pred_score_ls)
gt_score_total.append(gt_score_ls)
else:
generated_code_ls, gt_code_ls, prompt_ls, student_ls = generate_code_student(batch, tokenizer, model, lstm, linear, configs, device, predict_linear=predictor)
generated_code_total.append(generated_code_ls)
gt_code_total.append(gt_code_ls)
prompt_total.append(prompt_ls)
student_total.append(student_ls)
generated_codes = [gen_code_i for code_ls in generated_code_total for gen_code_i in code_ls]
gt_codes = [gt_code_i for code_ls in gt_code_total for gt_code_i in code_ls]
prompts = [prompt_i for prompt_ls in prompt_total for prompt_i in prompt_ls]
students = [student_i for student_ls in student_total for student_i in student_ls]
if configs.multitask:
if configs.multitask_label != 'granular':
pred_scores = [pred_score_i for pred_subset in pred_score_total for pred_score_i in pred_subset]
gt_scores = [gt_score_i for gt_subset in gt_score_total for gt_score_i in gt_subset]
mse = np.square(np.subtract(pred_scores, gt_scores)).mean()
results['MSE'] = mse
else:
pred_scores, gt_scores, pred_labels = [], [], []
overall_gt_ls, overall_pred_ls =[], []
cherry_pick_pred_total, cherry_pick_label_total, cherry_pick_score_total = [], [], []
for res_list_i in range(len(gt_score_total)):
res_list_gt = gt_score_total[res_list_i]
res_list_pred = pred_score_total[res_list_i]
res_list_label = pred_label_total[res_list_i]
for test_results_i in range(len(res_list_gt)):
labels_i_gt = res_list_gt[test_results_i]
labels_i_pred = res_list_pred[test_results_i]
labels_i = res_list_label[test_results_i]
cherry_pick_pred_total.append(labels_i)
cherry_pick_label_total.append(labels_i_gt)
cherry_pick_score_total.append(labels_i_pred)
valid_gt_ls = []
valid_pred_ls = []
for gran_i in range(len(labels_i_gt)):
if labels_i_gt[gran_i] != -100:
gt_scores.append(labels_i_gt[gran_i])
pred_scores.append(labels_i_pred[gran_i])
pred_labels.append(labels_i[gran_i])
valid_gt_ls.append(labels_i_gt[gran_i])
valid_pred_ls.append(labels_i[gran_i])
# Used for MSE calculation
gt_score_overall = np.mean(valid_gt_ls)
pred_score_overall = np.mean(valid_pred_ls)
overall_gt_ls.append(gt_score_overall)
overall_pred_ls.append(pred_score_overall)
pred_res = sum([pred == label for pred, label in zip(pred_labels, gt_scores)])
acc = pred_res / len(gt_scores)
results['Acc'] = acc
f1 = f1_score(gt_scores, pred_labels)
results['F1'] = f1
auc = roc_auc_score(gt_scores, pred_scores)
results['AUC'] = auc
mse = np.square(np.subtract(overall_gt_ls, overall_pred_ls)).mean()
results['MSE'] = mse
codebleu_score, detailed_codebleu_score = compute_code_bleu(gt_codes, generated_codes)
results['codebleu'] = codebleu_score
results['detailed_codebleu'] = detailed_codebleu_score
## compute diversity
metrics = {'dist_1': Distinct_N(1),
'dist_2': Distinct_N(2),
'dist_3': Distinct_N(3),
}
for i, (name, metric) in enumerate(metrics.items()):
metric_result = metric.compute_metric(generated_codes)
results[name] = metric_result
print(f"results: {results}")
## save results
results['generated_codes'] = generated_codes
results['ground_truth_codes'] = gt_codes
results['prompts'] = prompts
results['students'] = students
if configs.multitask:
results['prediction'] = cherry_pick_pred_total
results['labels'] = cherry_pick_label_total
results['prob'] = cherry_pick_score_total
if configs.save_model:
with open(os.path.join(configs.model_save_dir, now, 'eval_logs.pkl'), 'wb') as f:
pickle.dump(results, f)
with open(os.path.join(configs.model_save_dir, now, 'eval_logs.txt'), 'w') as f:
json.dump(results, f, indent=2)
return results
def generate_code_student(batch, tokenizer, model, lstm, linear, configs, device, predict_linear=None):
gen_code_ls, gt_code_ls, prompt_ls, gt_score_ls, pred_score_ls, pred_label_ls, student_ls = [], [], [], [], [], [], []
padded_inputs, padded_input_ids_ls, padded_attention_mask_ls ,padded_codes, padded_prompts, padded_scores, padded_question_seqs, padded_students = batch[0][:-1], batch[1][1:], batch[2][1:], batch[3][1:], batch[4][1:], batch[5][1:], batch[6][1:], batch[7][1:]
if configs.okt_model != 'codellama/CodeLlama-7b-Instruct-hf' and configs.okt_model != 'meta-llama/Meta-Llama-3-8B-Instruct' and configs.okt_model != 'Qwen/Qwen1.5-7B':
generator_input_wte = model.transformer.wte(padded_input_ids_ls).to(device)
else:
generator_input_wte = model.base_model.model.model.embed_tokens(padded_input_ids_ls).to(device)
if configs.use_lstm:
ks, hidden = lstm(padded_inputs)
ks = linear(ks)
if configs.multitask_inp == 'concat':
avg_question_emb = torch.mean(generator_input_wte, dim=2)
pred_input_emb = torch.cat((ks, avg_question_emb), dim=-1)
ks = ks.unsqueeze(2).repeat(1, 1, padded_input_ids_ls.size(2), 1)
generator_input_wte = torch.add(generator_input_wte, ks)
generator_input_wte = generator_input_wte.to(dtype=model.dtype, device=device)
padded_attention_mask_ls = padded_attention_mask_ls.to(device=device, dtype=model.dtype)
T, B, max_length, D = generator_input_wte.shape
generator_input_wte = generator_input_wte.view((T * B), max_length, D)
padded_attention_mask_ls = padded_attention_mask_ls.reshape((T * B), -1)
padded_scores = torch.unsqueeze(padded_scores, -1).reshape((T * B), -1)
flattened_codes = [code_i for subcode in padded_codes for code_i in subcode]
flattened_prompt = [prompt_i for subprompt in padded_prompts for prompt_i in subprompt]
flattened_students = [student_i for substudent in padded_students for student_i in substudent]
input_wte_subset = torch.split(generator_input_wte, 1)
attention_mask_subset = torch.split(padded_attention_mask_ls, 1)
if configs.multitask:
if configs.use_lstm:
ks = ks.reshape((T * B), max_length, D)
ks_subset = torch.split(ks, 1)
scores_subset = torch.split(padded_scores, 1)
if configs.multitask_inp == 'concat':
pred_input_emb = pred_input_emb.reshape((T * B), -1)
pred_input_subset = torch.split(pred_input_emb, 1)
if configs.multitask_label == 'granular':
padded_ques_seqs = torch.unsqueeze(padded_question_seqs, -1)
padded_ques_seqs = padded_ques_seqs.reshape((T * B), -1)
ques_seqs_groups = torch.split(padded_ques_seqs, 1)
config = GenerationConfig(max_new_tokens=configs.max_new_tokens, do_sample=False)
for i in range(len(input_wte_subset)):
ground_truth_code = flattened_codes[i]
prompt = flattened_prompt[i]
student = flattened_students[i]
if ground_truth_code:
input_wte_i = input_wte_subset[i]
attention_i = attention_mask_subset[i]
if configs.okt_model == 'meta-llama/Meta-Llama-3-8B-Instruct':
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
outputs = model.generate(inputs_embeds=input_wte_i, max_new_tokens=configs.max_new_tokens, do_sample=False, generation_config=config, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id, eos_token_id=terminators, attention_mask=attention_i)
else:
outputs = model.generate(inputs_embeds=input_wte_i, max_new_tokens=configs.max_new_tokens, do_sample=False, generation_config=config, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, attention_mask=attention_i)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
gen_code_ls.append(generated_code.strip())
gt_code_ls.append(ground_truth_code.strip())
prompt_ls.append(prompt)
student_ls.append(student)
if configs.multitask:
granular = True if configs.multitask_label == 'granular' else False
if configs.multitask_inp != 'concat':
if configs.multitask_label == 'granular':
prob_seq_sub = ques_seqs_groups[i].squeeze(-1)
predicted_label, predicted_score = predict_score_question_only(input_wte_i, attention_i, model, predict_linear, granular=granular, problem_seqs=prob_seq_sub)
else:
predicted_score = predict_score_question_only(input_wte_i, attention_i, model, predict_linear, granular=granular)
else:
predicted_score = predict_score_concat(pred_input_subset[i], predict_linear)
if granular:
pred_score_ls.append(predicted_score)
pred_label_ls.append(predicted_label)
gt_score_ls.append(scores_subset[i][0].tolist())
else:
pred_score_ls.append(predicted_score.item())
gt_score_ls.append(scores_subset[i][0][0].cpu().item())
if configs.multitask:
if granular:
return gen_code_ls, gt_code_ls, prompt_ls, pred_score_ls, gt_score_ls, pred_label_ls, student_ls
return gen_code_ls, gt_code_ls, prompt_ls, pred_score_ls, gt_score_ls, student_ls
return gen_code_ls, gt_code_ls, prompt_ls, student_ls
# Multitask Model predictor inference Version 2: take the question embedding only
def predict_score_question_only(generator_input_wte, attention_mask, model, predict_linear, granular=False, problem_seqs=None):
eps = 1e-8
with torch.no_grad():
output = model(inputs_embeds=generator_input_wte, attention_mask=attention_mask, output_hidden_states=True, return_dict=True)
hidden_states = output['hidden_states'][-1]
attention_sub_expand = torch.unsqueeze(attention_mask, -1)
hidden_states_valid = hidden_states * attention_sub_expand
pooled_out = hidden_states_valid.sum(dim=1)
valid_cnt = attention_sub_expand.sum(dim=1)
pooled_out = pooled_out / (valid_cnt + eps)
if granular:
pooled_out = pooled_out.unsqueeze(1)
model_weight = predict_linear[problem_seqs]
logits = torch.matmul(pooled_out, model_weight)
logits = logits.squeeze(1)
else:
logits = predict_linear(pooled_out)
score = torch.sigmoid(logits)
if granular:
pred = (score > 0.5) * 1
return pred[0].tolist(), score[0].tolist()
return score[0][0].cpu()
def predict_score_concat(pred_inp, predictor):
with torch.no_grad():
logits = predictor(pred_inp)
score = torch.sigmoid(logits)
return score[0][0].cpu()
def compute_code_bleu(ground_truth_codes, generated_codes):
params='0.25,0.25,0.25,0.25'
lang='java'
codebleu_score, detailed_codebleu_score = calc_code_bleu.get_codebleu(pre_references=[ground_truth_codes], hypothesis=generated_codes, lang=lang, params=params)
return codebleu_score, detailed_codebleu_score
class Metric():
"""
Defines a text quality metric.
"""
def get_name(self):
return self.name
@abc.abstractmethod
def compute_metric(self, texts):
pass
class Distinct_N(Metric):
def __init__(self, n):
"""
Distinct n-grams metrics. This is a sequence-level diversity metric.
See https://www.aclweb.org/anthology/N16-1014 for more details.
Args:
n (int): n-grams
"""
self.n = n
self.name = f'Distinct_{n}'
def compute_metric(self, texts):
return self._distinct_ngrams(texts, self.n)
def _distinct_ngrams(self, texts, n):
total = 0.0
for t in texts:
try:
tokens = nltk.tokenize.word_tokenize(t)
n_distinct = len(set(ngrams(tokens, n)))
total += n_distinct/ len(tokens)
except Exception as e:
print(f"Exception in computing Distinct_N metric: {e}")
continue
return total / len(texts)
def batch_generate(test_set, lstm_inputs, tokenizer, model, lstm, linear, configs, device):
prompts = [test_set[i]['next_prompt'] for i in range(len(test_set))]
ground_truch_codes = [test_set[i]['next_code'].strip() for i in range(len(test_set))]
students = [test_set[i]['SubjectID'] for i in range(len(test_set))]
full_prompts = [build_prompt_with_special_tokens(prompt, tokenizer, configs) for prompt in prompts]
inputs = tokenizer(full_prompts, return_tensors='pt', padding=True, truncation=True)
config = GenerationConfig(max_new_tokens=400, do_sample=False)
inputs_embeds = model.base_model.model.model.embed_tokens(inputs['input_ids'].to(device))
attention_mask = inputs['attention_mask'].to(device=device, dtype=model.dtype)
ks_batch = [get_knowledge_states_for_generator(lstm, lstm_inputs, [test_set[i]['SubjectID']], [test_set[i]['step']], configs, device, generation=True) for i in range(len(test_set))]
ks_batch_ts = torch.stack(ks_batch)
inputs_embeds = torch.add(inputs_embeds, linear(ks_batch_ts))
inputs_embeds = inputs_embeds.to(dtype=model.dtype, device=device)
outputs = model.generate(inputs_embeds=inputs_embeds, max_new_tokens=400, do_sample=False, generation_config=config, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, attention_mask=attention_mask)
generated_code = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_code = [i.strip() for i in generated_code]
return generated_code, ground_truch_codes, prompts, students
def batch_inference(configs, now, tokenizer, test_set, lstm_inputs, device):
results = {}
lstm = None
if configs.save_model:
# Load best models
if configs.okt_model == 'llama-3':
model = okt_model_init(configs, device, now, False)
else:
model = torch.load(os.path.join(configs.model_save_dir, now, 'model'))
linear = torch.load(os.path.join(configs.model_save_dir, now, 'linear'))
if configs.use_lstm:
lstm = torch.load(os.path.join(configs.model_save_dir, now, 'lstm'))
else:
lstm, tokenizer, model, linear = create_okt_model(configs, device)
tokenizer.padding_side = 'left'
# Set model to eval mode
model.eval()
linear.eval()
if configs.use_lstm:
lstm.eval()
test_set = make_pytorch_dataset(test_set, None, do_lstm_dataset=False)
generated_codes = []
ground_truth_codes = []
prompts = []
students = []
for idx in tqdm(range(0, len(test_set), 20), desc="batch inference"):
test_set_i = test_set[idx: idx+20]
generated_code_i, ground_truth_code_i, prompts_i, students_i = batch_generate(test_set_i, lstm_inputs, tokenizer, model, lstm, linear, configs, device)
generated_codes.extend(generated_code_i)
ground_truth_codes.extend(ground_truth_code_i)
prompts.extend(prompts_i)
students.extend(students_i)
## compute codebleu
codebleu_score, detailed_codebleu_score = compute_code_bleu(ground_truth_codes, generated_codes)
results['codebleu'] = codebleu_score
results['detailed_codebleu'] = detailed_codebleu_score
## compute diversity
metrics = {'dist_1': Distinct_N(1),
'dist_2': Distinct_N(2),
'dist_3': Distinct_N(3),
}
for i, (name, metric) in enumerate(metrics.items()):
metric_result = metric.compute_metric(generated_codes)
results[name] = metric_result
print(f"results: {results}")
## save results
results['generated_codes'] = generated_codes
results['ground_truth_codes'] = ground_truth_codes
results['prompts'] = prompts
results['students'] = students
if configs.save_model:
with open(os.path.join(configs.model_save_dir, now, 'eval_logs.pkl'), 'wb') as f:
pickle.dump(results, f)
with open(os.path.join(configs.model_save_dir, now, 'eval_logs.txt'), 'w') as f:
json.dump(results, f, indent=2)
# # write results to wandb
if configs.log_wandb:
for idx, (k, v) in enumerate(results.items()):
wandb.log({'metrics/test/generation_{}'.format(k): str(v)})
def eval_granular(configs, test_loader, device, now, loss_function):
if configs.save_model:
lstm = create_lstm_model(configs, device)
lstm.load_state_dict(torch.load(os.path.join(configs.model_save_dir, now, 'lstm')))
if configs.use_transition_model:
transition_model = create_transition_layer(configs, device)
transition_model.load_state_dict(torch.load(os.path.join(configs.model_save_dir, now, 'transition')))
else:
transition_model = None
granular_model = torch.load(os.path.join(configs.model_save_dir, now, 'granular_model.pth'))
else:
lstm = create_lstm_model(configs, device)
granular_model = create_granular_model(configs, device)
transition_model = None
if configs.use_transition_model:
transition_model = create_transition_layer(configs, device)
lstm.eval()
inf_logs = []
pred_total = []
label_total = []
for idx, batch in enumerate(tqdm(test_loader, desc='inferece', leave=False)):
test_log, pred_ls = predict_granular_step(idx, batch, lstm, granular_model, transition_model=transition_model, configs=configs,
loss_fn=loss_function, train=False, device=device, eval=True)
inf_logs.append(test_log)
logits_sub = test_log['auc']['logits']
pred_tensor = (torch.sigmoid(logits_sub) > 0.5) * 1
pred_sub = pred_tensor.tolist()
label_sub = test_log['auc']['scores'].tolist()
pred_total.append(pred_sub)
label_total.append(label_sub)
preds = [pred for pred_ls in pred_total for pred in pred_ls]
labels = [lab for lab_ls in label_total for lab in lab_ls]
final_res = aggregate_metrics(inf_logs)
f1 = f1_score(labels, preds)
final_res['F1'] = f1
with open('granularKT_res', 'wb') as fp:
pickle.dump(pred_ls, fp)
return final_res
def nested_dict():
return defaultdict(list)
def cal_p_value(a, b):
stat = ttest_ind(a, b, equal_var=False)
print(stat)
@hydra.main(version_base=None, config_path=".", config_name="configs_okt")
# @hydra.main(version_base=None, config_path=".", config_name="configs_okt_testcase")
def main(configs):
warnings.filterwarnings("ignore")
# Make reproducible
set_random_seed(configs.seed)
# now = configs.checkpoint
now = '20240917_005126' #all-submission-TIKTOC
print(now)
# Set device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
if configs.use_cuda: assert device.type == 'cuda', 'No GPU found'
if configs.okt_model == 'meta-llama/Meta-Llama-3-8B-Instruct':
login(token='')
if configs.log_wandb:
wandb.login(key=configs.wandb_key, verify=True)
wandb.init(project=configs.wandb_project, id="22mhccqg", resume="must")
tokenizer = create_tokenizer(configs)
if configs.exp_name == 'okt':
if configs.split_by == 'submission':
if configs.save_model:
# Load best models
if configs.okt_model == 'codellama/CodeLlama-7b-Instruct-hf' or configs.okt_model == 'meta-llama/Meta-Llama-3-8B-Instruct' or configs.okt_model == 'Qwen/Qwen1.5-7B':
model = okt_model_init(configs, device, now, False, load_in_8bit=True)
collate_fn = CollateForOKT(tokenizer=tokenizer, configs=configs, device=device)
train_set, valid_set, test_set, dataset, students = read_data(configs, tokenizer, model, device)
lstm_inputs = get_lstm_inputs(configs, train_set, dataset, collate_fn)
print('start eval func:')
res = evaluate(configs, now, test_set, lstm_inputs, tokenizer, device)
# batch_inference(configs, now, tokenizer, test_set, lstm_inputs, device)
else:
train_set, valid_set, test_set, dataset, students = read_granular_data(configs)
print('start eval func:')
res = eval_student(configs, now, test_set, dataset, tokenizer, device)
if configs.log_wandb:
result = {'codeBLEU': res['codebleu']}
result['Acc'] = res['Acc']
result['AUC'] = res['AUC']
result['F1'] = res['F1']
result['MSE'] = res['MSE']
wandb.log(result)
wandb.finish()
if __name__ == "__main__":
#torch.set_printoptions(profile="full")
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
torch.cuda.empty_cache()
main()