-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassificition.py
executable file
·126 lines (103 loc) · 4.55 KB
/
classificition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from PIL import Image
import numpy as np
import cv2
import shutil
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # or any {DEBUG, INFO, WARN, ERROR, FATAL}
def convert_to_opencv(image):
image = image.convert('RGB')
r,g,b = np.array(image).T
opencv_image = np.array([b,g,r]).transpose()
return opencv_image
def crop_center(img,cropx,cropy):
h, w = img.shape[:2]
startx = w//2-(cropx//2)
starty = h//2-(cropy//2)
return img[starty:starty+cropy, startx:startx+cropx]
def resize_down_to_1600_max_dim(image):
h, w = image.shape[:2]
if (h < 1600 and w < 1600):
return image
new_size = (1600 * w // h, 1600) if (h > w) else (1600, 1600 * h // w)
return cv2.resize(image, new_size, interpolation = cv2.INTER_LINEAR)
def resize_to_256_square(image):
h, w = image.shape[:2]
return cv2.resize(image, (256, 256), interpolation = cv2.INTER_LINEAR)
def update_orientation(image):
exif_orientation_tag = 0x0112
if hasattr(image, '_getexif'):
exif = image._getexif()
if (exif != None and exif_orientation_tag in exif):
orientation = exif.get(exif_orientation_tag, 1)
# orientation is 1 based, shift to zero based and flip/transpose based on 0-based values
orientation -= 1
if orientation >= 4:
image = image.transpose(Image.TRANSPOSE)
if orientation == 2 or orientation == 3 or orientation == 6 or orientation == 7:
image = image.transpose(Image.FLIP_TOP_BOTTOM)
if orientation == 1 or orientation == 2 or orientation == 5 or orientation == 6:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
return image
def classification(imageFileImport):
graph_def = tf.GraphDef()
labels = []
# These are set to the default names from exported models, update as needed.
filename = "trained_model_road/model.pb"
labels_filename = "trained_model_road/labels.txt"
# Import the TF graph
with tf.gfile.GFile(filename, 'rb') as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
# Create a list of labels.
with open(labels_filename, 'rt') as lf:
for l in lf:
labels.append(l.strip())
# Load from a file
imageFile = imageFileImport
image = Image.open(imageFile)
# Update orientation based on EXIF tags, if the file has orientation info.
image = update_orientation(image)
# Convert to OpenCV format
image = convert_to_opencv(image)
# If the image has either w or h greater than 1600 we resize it down respecting
# aspect ratio such that the largest dimension is 1600
image = resize_down_to_1600_max_dim(image)
# We next get the largest center square
h, w = image.shape[:2]
min_dim = min(w,h)
max_square_image = crop_center(image, min_dim, min_dim)
# Resize that square down to 256x256
augmented_image = resize_to_256_square(max_square_image)
# Get the input size of the model
with tf.Session() as sess:
input_tensor_shape = sess.graph.get_tensor_by_name('Placeholder:0').shape.as_list()
network_input_size = input_tensor_shape[1]
# Crop the center for the specified network_input_Size
augmented_image = crop_center(augmented_image, network_input_size, network_input_size)
# These names are part of the model and cannot be changed.
output_layer = 'loss:0'
input_node = 'Placeholder:0'
F = open("pothole.txt", "a")
with tf.Session() as sess:
try:
prob_tensor = sess.graph.get_tensor_by_name(output_layer)
predictions, = sess.run(prob_tensor, {input_node: [augmented_image] })
except KeyError:
print ("Couldn't find classification output layer: " + output_layer + ".")
print ("Verify this a model exported from an Object Detection project.")
exit(-1)
# Print the highest probability label
highest_probability_index = np.argmax(predictions)
print('Classified as: ' + labels[highest_probability_index])
if labels[highest_probability_index] == 'pothole':
F.write(imageFile+",\n")
shutil.copy(imageFile, 'pothole_detected')
print()
# Or you can print out all of the results mapping labels to probabilities.
label_index = 0
for p in predictions:
truncated_probablity = np.float64(np.round(p,8))
print (labels[label_index], truncated_probablity)
label_index += 1