Rhyme Prototype Type Rules

October 16, 2024

Contents
1 Subtype Definition and Properties
2 Union Definition and Properties

3 Primitive Types

3.1 Subtype Relationships . . . . . . . . . .
3.1.1 Numbers . . . . . . . e
3.1.2  Strings . . . . oL e

4 Number Types
4.1 Pure Operations on Numbers . . . . . . . .. .. L L
4.2 Stateful Operations on Numbers . . . . . .. .. ... . L L

5 Key Types
5.1 Pure Operations on Keys . . . . . . . . . .
5.2 Stateful Operationson Keys . . . . . . . . . . ...

6 Object Types
7 Object Accessing
8 General Stateful Operations

9 Functions
9.1 Definition . . . . . . .
9.2 Subtyping Relation . . . . . . . .. e

10 Unknown Type
10.1 Pure Operations on Unknown . . . . . . . . . .. .. L L
10.2 Stateful Operations on Unknown . . . . . . . . ... .. . L
10.3 Object Access Operation with Unknown . . . . . . . . . . ... ... ... ... .. ......
10.4 Propagation of Error Type . . . . . . .« . .

w N NN

w W

[ B

SO



1 Subtype Definition and Properties

Fax:T T<:S8
L1) Fa:S
12) —m=p
T<:§ S<T
1.3.) —
S=T
1.4) T<:§ S<T

Consider 1.1 as the definition of a type being a subtype.

Let 1.3 and 1.4 be the definition of the =: relation between types.

2 Union Definition and Properties

2.1) T<:(TUS)

22) (SUT)=:(TUS)

23 (TUT)=T
T<:5

24) (TUS)=:8

3 Primitive Types

For unsigned and signed integers, there are 8, 16, 32, and 64 bit variants. Aswell, there are 32bit and 64bit
floating point types.

For these number values:

Let U = {u8,ul6,u32,u64}. Let T = {i8,i16,i32,i64}, and F = {32, f64}.
Let N=UUIUF.

For strings, there is a base string type, string, and constant strings.

There are aswell more types: Keys, Objects, and Functions, that are defined later.

3.1 Subtype Relationships

3.1.1 Numbers

3.1.1.1.) u8 <:wul6 <:u32 <:ubd

3.1.1.2.) i8 <:i16 <: 932 <:i64

3.1.1.3.) f32<: f64, u8 <: 416, ul6 <:1i32, u32 <:i64

Technically, these following subtypes can also be added, given the size of the mantissa of floats. However,
given CPU architecture design, a conversion would be required, which would add complexity. It might be
better to consider an implicit/explicit casting operation.



3.1.1.4.) i16 <: £32, ul6 <: f32
3.1.1.5.) i32 <: 64, u32 <: f64

3.1.2 Strings

S is a constant string
S <: string

3.1.2.1.)

Also, just to include:

F s =5 where S is a constant string
Fs:S

3.1.2.2.)

4 Number Types

4.1 Pure Operations on Numbers

Given the subtype relations, the following rules work for most instances, such as u8 + i16:

TeN Fa:T +Fb:T

4.1.1.
) Fa+b:T

TeN Fa:(TUNothing) Fb: (T UNothing)

4.1.2.
) Fa+b: (T UNothing)

These rules can then be extended to most other pure (math) operations.

TODO: Determine how to possibly handle errors of division by zero or similar. Perhaps disclude the certainty
of the result being T, as follows:?

TeN Fa:(TUNothing) Fb: (T UNothing)
F a/b: (T U Nothing)

41.3)

TODO: Figure out relations between floats and integers, aswell as unsigned and signed integers. Proposal:

TreF TreUUI Fa:Trp FbL:TY
Fa+b: Tk

4.1.4.) (and it’s commutative corrolary)

4.2 Stateful Operations on Numbers

Same TODO applies for the relation between floats, signed ints, and unsigned ints, outside of the subtypes
given.

TeN Fa:(TUNothing)

4.2.1.
) Fsum(a) : T
12.2) TeN Fa:(TUNothing)
o F product(a) : T
12.3) TeN Fa:(TUNothing)
o F min(a) : (T'U Nothing)
42.4) TeN Fa:(TUNothing)

F max(a) : (T' U Nothing)



5 Key Types

Let K, (T) be a "key” type, defined by: W

5.1 Pure Operations on Keys

Given x : K,(T), we cannot guarantee that x + y : K, (T). Hence, plus, minus, etc must yield type 7. As
such, these rules are then covered since K, (T') <: T, and previous rules cover the case of z : T

5.2 Stateful Operations on Keys

In a similar vein to the pure operations for keys, sum and product cannot guarantee the result would be a
key, so they must return the key’s supertype. Hence, the previous rules aswell cover sum and product.

TeN Fa:(K,(T)UNothing)

5.2.1.) + min(a) : (K,(T) U Nothing)

TeN Fa:(K,(T)UNothing)

5.2.2.) + max(a) : (K, (T) U Nothing)

6 Object Types

Objects are defined recursively through a base object alongside updates that insert a key value type pairs
into the object. While K is used as the variable for an object key, K does not necessarily have to be a key
type K, (T).

6.1.1.) —
' FO0
6.1.2) ———
) {} € object
6.1.3) Fxz:T T € object
o I—x{K1:V1}:T{K1:V1}
6.1.4) T € object

T{K, : V1 } € object

7 Object Accessing

Given the recursive definition of an object, accessing the value of an object then recursively searches for
potential values given a key type.

{}[%] : Nothing

Fz:0 O€object Fk:K K< K
F(z{K1:Vi}DIk]: W

Fx:O Oe€object Fk:K KNK; #0 bFak:K\Ki]:T,
H (]}{Kl Tl})[lf] IT1 UT2

Fz:0 Oe€object Fk:K KNK =0 Fakl:T,
H (.T{Kl : Tl})[k] : TQ

Fxz:0 O €object kis a filter variable on x
F & : keyof(O)




where keyof is defined as

T € object
keyof({}) =: 0 keyof(T{K7 : V1}) =: (K1 Ukeyof(T))

TODO: The base case of keyof implies the existence of a type with no possible value to it (). Should this
be allowed?

8 General Stateful Operations

Certain stateful operations don’t depend on types.

F a : (T U Nothing)
F first(a) : (T U Nothing)

Fa:
Flast(a

T U Nothing)
: (T'U Nothing)

(
)
Fa: (T U Nothing)

t single(a) : (T'U Nothing)

TODO: Determine size of objects. The following rules assume amount of items in object won’t exceed
maximum value of 32-bit unsigned integer.

F a : (T'U Nothing)
Farray(a) : {}{K,(u32) : T}

Fa:T
F count(a) : u32

9 Functions

9.1 Definition
"f: (Tl,TQ,...,Tn):>R F 2T17£L'2 ITQ,...,.’En 2Ty
flz1, 20, ..,zn) : R

9.2 Subtyping Relation

T1 S: Sl,TQ S: SQ, ...,Tn S: Sn R1 SI RQ
(Sl,SQ, ,Sn) = R <: (Tl,TQ, ,Tn) = Rz

10 Unknown Type
Let there be two new types: Unknown and Error.

In general, if a variable x is of type Unknown, then if it being type T yields a result f(z) of type S, then
f(x) should be of type S U Error.

TODO: Consider: Should Unknown be a subtype or supertype of anything? Does Unknown contain Nothing?

Because it is a question whether Unknown contains nothing, (Unknown U Nothing) will be used to explicitly
denote Nothing is included in a type.

T eN
T U Unknown =: Unknown

TODO: Consider if the following rule should apply, and similar:



10.1 Pure Operations on Unknown

Note: Cannot have y : T — x + y : T'U Error, because if T is a u8 and Unknown is a u64, then = + y : u64.
It is necessary that x 4+ y hence is a supertype that can encapsulate all possible numbers. However, it is
undecided as to how u64, i64, and f64 are to be related. As such, the union of these will be explicitly shown.

Fz:Unknown Fy:7T TeN

10.1.1.
0 ) Fz+4+y:u64Ui64U f64 U Error

F 2 : Unknown F y: Unknown

10.1.2.
0 ) Fa+y:ub4Ui64U f64 U Error

Aswell, depending on whether or not Unknown includes Nothing, the following rules might be needed:

F 2 : (Unknown U Nothing) F y: (T"UNothing) T € N
Faz+y: (ub64Ui64U f64 U Error U Nothing)

10.1.3.)

F 2 : (Unknown U Nothing)  F y : (Unknown U Nothing)
Faz+y: (u64Ui64U f64 U Error U Nothing)

10.1.4.)

10.2 Stateful Operations on Unknown

Stateful operations requiring numbers or comparable values would have to result in either a number or an
Error.

10.2.1.) F 2 : Unknown
77 Fmin(x) s w64 Ui64 U f64 U Error

10.2.2.) F 2 : Unknown
T Fmax(x) : u64 Ui64 U £64 U Error

10.2.3.) F 2z : Unknown
T Fsum(z) ;w64 Ui64 U £64 U Error

10.2.4.) F 2 : Unknown
7k product(z) : u64 Ui64 U f64 U Error

The other stateful operations covered in the general rules would apply without problem.

10.3 Object Access Operation with Unknown

There’s two possible ways of handling object accesses on Unknown types. Given an unknown type could be
a non-object, the result must inherently error. However, even if successful, the result type would still be
unknown. Hence, it can be Unknown, or, alternatively, it can be Any. Of the two, propagating the existing
type of Unknown appears to make more sense, hence the rule is:

10.2.1.) Fx:Unknown +HEk:T
o F z[k] : Unknown U Error

Considering the opposite then aswell, the existing rules for accessing should apply. Specifically note though
that the intersection between unknown and the keys is non-empty, hence all possible values could be included
as a result of the operation, aswell as Nothing.

10.4 Propagation of Error Type

All pure and stateful operations must propagate the Error type. This would apply to all existing rules as a
secondary rule, broadly defined as:



Fa:TiUError Fb:T5
F f(a,b) : typeof(f(T1,T2)) U Error

10.4.1.) (and it’s commutative corrolary)

Fa:TUError
F f(a) : typeof(f(T)) U Error

10.4.2.)

For some specific examples:

10.4.3.) Fa:TUError
Y Farray(a) s {H{K,(u32) : T} U Error

Fa: T UZError

10.3.4.
) F count(a) : u32 U Error




