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Introduction 
The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC) developed the quantitative risk 
analysis software (RMC-TotalRisk) to enhance and expedite risk assessments within the USACE Flood Risk 
Management, Planning, and Dam and Levee Safety Communities of Practice. 

RMC-TotalRisk is a menu-driven software, which performs risk analysis from user defined hazard, system response, 
and consequence functions. The software features a fully integrated modelling platform, including a modern graphical 
user interface, data entry capabilities, and report quality charts and diagnostics. TotalRisk can perform multi-failure 
risk analysis for a single dam or levee or for a complex system with multiple components.  

This document provides a technical reference for performing quantitative risk analysis with RMC-TotalRisk. The 
mathematical details, numerical methods, and simulation algorithms underlying each method are presented. Enough 
technical detail is provided so that the reader can replicate the methods if desired.   

This document is aimed at engineers and scientists that have studied probability and statistics at a college-level. It is 
recommended that the reader refresh themselves on probability fundamentals in Appendix A before continuing.  

Examples related to flood risk for dams and levees are provided throughout this document. However, the software is 
not limited to just flood risk management applications. RMC-TotalRisk is a general-purpose risk analysis software, 
capable of estimating risk for a variety of complex systems.  

RMC Software Suite 
The RMC-TotalRisk software is part of the greater RMC risk analysis software suite [1]. Figure 1 shows a schematic 
of the software suite and how each tool is intended to interact together in support of the overall risk analysis. 
 

 
Figure 1 - Schematic of the RMC risk analysis software suite. 
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Flood hazard information can be estimated with the stochastic rainfall-runoff frequency tool (RRFT), the Bayesian 
estimation and fitting software (BestFit), and/or the reservoir frequency analysis software (RFA), and then imported to 
TotalRisk. These flood hazard tools are designed to work together or independently. For example, results from RRFT 
can be incorporated into BestFit, or entered directly into TotalRisk. Various semi-quantitative (SQRA) or quantitative 
risk assessment (QRA) toolboxes can be used to support the estimation of system response probabilities. 
Consequences can be estimated with and imported from LifeSim. RMC-TotalRisk then combines the hazard, system 
response, and consequences to calculate the system risk. TotalRisk can perform risk analysis for a single component, 
such as a dam or levee, or a complex system with multiple components, where each component can have multiple 
failure modes.  

Overview of the Risk Analysis Framework 
Risk has various definitions and interpretation among different industries, but it is generally understood to describe the 
probability and severity of an adverse event [2]. Risk can also be defined in terms of an expected value and deviations 
from the expected value. For example, in the financial industry, the standard deviation is a popular risk measure for 
stock returns [3]. Flood risk management investment decisions are typically made from a risk neutral perspective 
based on average annual net benefits [4]. As such, flood risk can be formally defined as the expected value of 
consequences 𝔼𝔼[𝐶𝐶], which is calculated as: 

𝔼𝔼[𝐶𝐶] =  � 𝐶𝐶(𝑥𝑥)
∞

−∞

∙ 𝑓𝑓�𝐶𝐶(𝑥𝑥)� ∙ 𝑑𝑑𝑑𝑑  Equation 1 

where 𝑥𝑥 is the hazard level (e.g., flood discharge or water level); 𝐶𝐶(𝑥𝑥) determines the consequences, such as 
property damage or life loss, for the hazard level 𝑥𝑥; and 𝑓𝑓�𝐶𝐶(𝑥𝑥)� is the probability density function (PDF) of the 
consequences occurring. The probability distribution of consequences can be defined as a function of hazard, system 
response, and consequence functions: 

𝔼𝔼[𝐶𝐶] =  � 𝑓𝑓𝑥𝑥(𝑥𝑥)
∞

−∞

∙ 𝐹𝐹𝑅𝑅(𝑥𝑥) ∙ 𝐶𝐶𝑅𝑅(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑  Equation 2 

where 𝑓𝑓𝑥𝑥(𝑥𝑥) is the probability density function of the hazard (e.g., annual maximum water level or ground 
acceleration), 𝐹𝐹𝑅𝑅(𝑥𝑥) is the system response function (i.e., probability of failure given hazard level 𝑥𝑥), and 𝐶𝐶𝑅𝑅(𝑥𝑥) is the 
consequences given the hazard level 𝑥𝑥 and the system response.  

In practice, the risk integral for a dam or levee is often calculated numerically by annualizing and discretizing the 
hazard. The risk of failure using discrete hazard levels follows from Equation 2 and is defined as: 

𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)
𝑖𝑖

∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖)  Equation 3 

where 𝑃𝑃(𝑥𝑥𝑖𝑖) is the probability of the hazard level 𝑥𝑥𝑖𝑖; 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) is the conditional probability of failure given the hazard 
level 𝑥𝑥𝑖𝑖; and 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) is the consequence of failure given the hazard level 𝑥𝑥𝑖𝑖. Equation 3 is often written semantically to 
convey the risk equation as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) × 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  Equation 4 

where the risk of failure is equal to the probability of the hazard level, 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), multiplied by the probability of 
failure given the hazard level, 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), multiplied by the consequences of failure at the hazard 
level, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.   

In the risk analysis of dams and levees, the hazard is typically annualized by the annual maximum peak water surface 
elevation (WSE) or annual maximum peak ground acceleration (PGA) [5]. Annualizing the hazard results in an 
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annualized estimate for the expected consequences (e.g., average annual life loss or expected annual damage). 
Annualizing the risk estimate is not required in TotalRisk.  

The system response function is conditioned on the hazard. Consequences are conditioned on both the hazard and 
the system response. Other parameters such as discharge, duration, velocity, magnitude, and ground motion time 
history can also be important for certain failure modes, such as erosion or liquefaction. Similarly, consequences may 
depend on breach location, size, and discharge along with warning and evacuation. When formulating a risk model, 
the risk analyst should select the most appropriate hazard variable and consider any additional effects and 
contributions that other relevant characteristics of the hazard may have on the system response and consequence 
functions.  

The conceptual risk analysis process for a levee with a single failure mode and a single system component is shown 
in Figure 2 below. Beginning in the top left of the figure, the flood hazard is defined by an annual maximum peak flow-
frequency distribution that is estimated using flood-frequency analysis methods. Next, moving to the top right, peak 
flow is then transformed to a WSE using a stage-discharge rating curve, which is estimated using a hydraulic model. 
Then, moving to the bottom right, the system response function is defined by a probability of failure given WSE, often 
derived from engineering analysis and expert elicitation methods. And finally, moving to the bottom left, the 
consequences given failure are estimated as a function of WSE. The expected annual consequences are computed 
by numerically integrating over these functions following Figure 2. Greater details on the mathematics of risk analysis 
are provided in the Quantitative Risk Analysis chapter. Additional details on risk analysis for flood risk management 
can be found in [6], [5], and [7]. 

 
Figure 2 - Levee risk analysis process for a single failure mode and a single system component. 
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Risk Analysis Inputs 
Figure 2 illustrates the key inputs for a single failure mode for a single system component. Starting from the top left of 
Figure 2 and moving clockwise, the key inputs are as follows: 

• Hazard Function: A hazard function describes the exceedance probabilities of various hazard levels. Hazard 
functions are also commonly referred to as frequency curves. Examples include annual maximum peak flow-
frequency, peak reservoir pool stage-frequency, and peak ground acceleration.  
 

• Transform Function: A transform function can be used to transform (or convert) the hazard levels from one 
type of function to another. For example, a peak flow-frequency function can be transformed to a stage-
frequency function using a flow-to-stage rating curve. Transform functions are optional inputs in TotalRisk. 
 

• System Response Function: A system response function describes the conditional probability of failure for 
various hazard levels, such as water surface elevations. System response functions are sometimes referred 
to as fragility curves. The system response function defines the failure mode in RMC-TotalRisk.  
 

• Consequence Function: A consequence function describes the consequences of failure or non-failure for 
various hazard levels, such as annual maximum peak water surface elevations. Consequence functions are 
also sometimes referred to as damage functions. 

Natural Variability and Knowledge Uncertainty 
There are two primary components of randomness that can be modeled in a quantitative risk analysis: natural 
variability and knowledge uncertainty. Natural variability is best described as the effect of randomness and is a 
function of the system [8]. This is also referred to as aleatory uncertainty. It is not reducible through either study or 
further measurement. For example, a peak flow-frequency curve describes the natural variability in peak flow. Another 
example is the distribution of consequences for various hazard levels, such as water surface elevation.  

Knowledge uncertainty is the lack of knowledge about the parameters or processes that characterize the system 
being modeled. This is also referred to as epistemic uncertainty. Knowledge uncertainty can be reduced through 
further measurement or study. For example, the confidence intervals, or uncertainty bounds, around a peak flow-
frequency curve describe the knowledge uncertainty in the statistical parameters of the peak flow-frequency curve. 
Another example is the uncertainty bounds around the distribution of life loss consequences, which describe the 
knowledge uncertainty in modeled warning times and evacuation rates in the flood inundated area. 

There are two primary sources of knowledge uncertainty in quantitative risk analysis: sampling uncertainty and model 
uncertainty. First, the observed sample of large flood and seismic events, the structural performance during those 
events, and the associated flood damages is usually small. The relatively small sample sizes result in knowledge 
uncertainty pertaining to the true input probability distributions and corresponding consequence exceedance 
probabilities. This sampling uncertainty is a property of the effective sample size of the random variable; as the 
sample size increases, the knowledge uncertainty decreases.  

Secondly, a probability distribution or simulation model does not always fully explain the variability of a particular input 
variable. This is referred to as model uncertainty, and it is due to the inherent assumptions in the formulation of the 
mathematical model itself, and our inability to identify the best fitting model.  

In RMC-TotalRisk, the user-defined input functions model the natural variability of the system being evaluated. The 
input functions can be defined with either parametric or nonparametric methods, with or without uncertainty. 
Uncertainty about an input function defines the knowledge uncertainty. For the remainder of this document, 
knowledge uncertainty will be referred to as just uncertainty.  

Risk Analysis 
A risk analysis in RMC-TotalRisk is defined through a diagram as shown in Figure 3 below. The diagram provides an 
intuitive way to create and connect the various components of the modelled system. Figure 3 shows a single system 
component for a dam safety risk analysis. There is a non-failure mode, shown at the top of the diagram with the 
purple line, that connects the hazard function to the non-failure consequences, without any system response. For 
typical dams and levees, there will often be consequences even if the structure does not fail. For example, during a 
major flood event, a dam could activate the emergency spillway, or a levee could overtop, preventing them from 
reducing flood damage. The non-failure mode is used to model the risk of non-failure. There are two failure modes: 1) 
An internal erosion failure mode, labelled PFM 1, shown in the center of the diagram connects the hazard at Dam A to 
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the PFM 1 response function and the PFM 1 consequences; and 2) An overtopping failure mode, labelled PFM 2, 
shown in the bottom of the diagram with the same respective connections.  

 
Figure 3 - RMC-TotalRisk risk diagram. 

 

The system components are identified and labelled by the selected hazard function. The failure modes within a 
component are identified and labelled by the selected response functions. RMC-TotalRisk permits an unlimited 
number of failure modes per component. However, a single system is limited to 20 components due to virtual memory 
and computer runtime limitations. For example, the system risk of a watershed comprising up to 20 dams, each with 
dozens of failure modes, can be assessed.  

Dependency between failure modes and system components can be defined in TotalRisk. There is rarely enough data 
to estimate the dependency between failure modes. Instead, failure modes can be modelled as perfectly independent, 
or perfectly negatively dependent. Perfect independence is an upper bound when failure modes are positively 
correlated. Whereas perfect negative dependency is an upper bound when failure modes are negatively correlated 
[9]. Likewise, dependency between system components can be set as perfectly independent, positive, or negatively 
dependent. There is also an option to set the dependency between system components with a user defined 
correlation matrix.  

After the inputs and dependency options have been selected, the risk for each individual failure mode, each system 
component, and the overall system can be computed. The overall risk and Monte Carlo simulation framework 
employed by RMC-TotalRisk is illustrated in Figure 4 below.  

The following chapters provide technical details on the risk analysis inputs, and the available options for each. The 
Quantitative Risk Analysis chapter provides complete details on how the inputs are used to estimate risk in RMC-
TotalRisk.  
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Figure 4 - Flowchart of the RMC-TotalRisk simulation options: (a) Simulate mean risk only, and (b) Simulate risk with full 
uncertainty. 

Applicability 
RMC-TotalRisk was developed to support risk assessments within the USACE Flood Risk Management, Planning, 
and Dam and Levee Safety Communities of Practice. The risk analysis capabilities and features were developed in 
accordance with the following USACE risk management guidance: 

• Engineer Regulation (ER) 1105-2-100, Planning Guidance Notebook [10] 
 

• ER 1105-2-101, Risk Assessment for Flood Risk Management Studies [2] 
 

• ER 1110-2-1156, Safety of Dams – Policy and Procedures [11] 
 

• Engineer Manual (EM) 1110-2-1619, Risk-based Analysis for Flood Damage Reduction Studies [7] 
 

• Best Practices in Dam and Levee Safety Risk Analysis [5] 

RMC-TotalRisk is a powerful and general-purpose risk analysis software, capable of estimating risk for a variety of 
systems. Typical applications in science and engineering include flood risk management, but TotalRisk can be used 
for any risk analysis application that has a hazard and a consequence. 
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Hazard Functions 
In RMC-TotalRisk, a hazard function is defined by the exceedance probabilities of various hazard levels, such as 
annual maximum peak flow or water surface elevation. Hazard functions are also commonly referred to as frequency 
curves. In the risk assessment of dams and levees, the annual maximum peak water surface elevation (or stage) or 
the annual maximum peak ground acceleration are typically the primary hazard parameters for evaluating a potential 
failure mode [5] [12]. As such, the hazard functions will commonly describe the annual exceedance probability (AEP) 
of these hazard levels.  

Hazard functions can be defined as either a parametric or nonparametric distribution. A parametric distribution has a 
theoretical mathematical form, with input parameters, that describes how the probabilities are distributed over the 
values of a random variable. Parametric distributions are sometimes referred to as theoretical or analytical 
distributions [7] [13]. A nonparametric probability distribution makes very few assumptions about the underlying 
theoretical model, and it is based on empirical or simulated data. Nonparametric distributions are sometimes referred 
to as nonanalytical, empirical, graphical, or tabular distributions [7] [13] [14]. 

All hazard functions in RMC-TotalRisk are modeled as a continuous random variable (see Appendix A). As such, 
each have a probability density function (PDF), 𝑓𝑓(𝑥𝑥), a cumulative distribution function (CDF), 𝐹𝐹(𝑥𝑥), a survival 
function, 𝑆𝑆(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥), and an inverse CDF, 𝐹𝐹−1(𝑝𝑝). All hazard functions are numerically integrated between a 
probability of 10−16 and 1 − 10−16, which is sufficiently close to 0 and 1 (see Appendix D). This is done to make the 
risk results collectively exhaustive.  

The following subsections describe the various hazard function options in RMC-TotalRisk.  

Parametric 
A hazard function can be defined with a parametric probability distribution. The following parametric distribution 
options are available for parametric hazard functions: 

• Exponential 
• Gamma 
• Generalized Extreme Value 
• Generalized Logistic 
• Generalized Normal 
• Generalized Pareto 
• Gumbel (EV1) 
• Kappa-4 
• Log-Normal 
• Log-Pearson Type III 
• Pearson Type III 

For details on these distributions, please see Appendix E. Parametric distributions can be estimated from distribution 
fitting software, such as RMC-BestFit, HEC-SSP, or other various commercial software.   

TotalRisk uses the parametric bootstrap [15] [16] to quantify uncertainty in a parametric hazard function. The 
bootstrap procedure involves the following general steps: 

1. Randomly sample 𝑛𝑛 hazard levels from the user-defined probability distribution, or parent distribution, where 𝑛𝑛 
is equal to the effective record length (ERL). This is called the bootstrap sample.  
 

2. Estimate a new distribution from the bootstrap sample. The distribution can be estimated with product 
moments, linear moments, or maximum likelihood. See [17], [18], and [19] for more details on these 
estimation and fitting methods for distributions.  
 

3. Record quantiles for desired nonexceedance probabilities, and any other output of interest. 
 

4. Repeat steps 1 through 3 for a sufficient large number of realizations, 𝑅𝑅. Then, derive confidence intervals by 
computing percentiles from the bootstrapped array for the desired output.  
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The parametric bootstrap is more formally described in Algorithm 1 below. The user must enter the ERL, which is a 
measure of information content in the fit of the distribution. The longer the ERL, the less uncertainty and narrower the 
confidence intervals. The ERL is sometimes referred to as the equivalent record length or effective sample size. Many 
definitions exist, but in the context of flow-frequency, ERL is typically defined as the number of exact data needed to 
produce the same confidence intervals given a combination of exact and censored data [20] .Guidance on selecting 
an appropriate ERL is provided in [7] and [20]. 

Algorithm 1 – Parametric Bootstrap Analysis 
 
𝑅𝑅 ← number of bootstrap realizations 
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ← effective record length (ERL) 
𝑛𝑛𝑝𝑝 ←  number of user-specified exceedance probabilities 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

Sample at random with replacement 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 hazard levels 𝒙𝒙𝒊𝒊∗ ← �𝑥𝑥1∗,⋯ , 𝑥𝑥𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 
∗ � from parent distribution 

𝑓𝑓(𝜃𝜃). 
Estimate and record the distribution parameters 𝜃𝜃𝑖𝑖∗ given the bootstrap sample 𝒙𝒙𝒊𝒊∗. 
for 𝑗𝑗 ← 1 to 𝑛𝑛𝑝𝑝 do 

Record quantile for specified exceedance probability 𝑞𝑞𝑖𝑖𝑖𝑖∗ =  𝐹𝐹−1�1 − 𝑝𝑝𝑗𝑗|𝜃𝜃𝑖𝑖∗�. 
end for 

end for 
Estimate confidence intervals and mean hazard curve from all bootstrap realizations {𝒒𝒒𝟏𝟏∗ ,⋯ ,𝒒𝒒𝑹𝑹∗ }, for all 
exceedance probabilities. 
 

 

An example of the modeled parametric bootstrap uncertainty for a parametric hazard is provided in Figure 5. This 
figure shows a Log-Pearson Type III distribution for peak flows (cfs) with a mean (of log) of 3.0, a standard deviation 
(of log) of 0.2, a skew (of log) of 0.5, an ERL of 100, and 10,000 bootstrap realizations. 

 
Figure 5 - Example of a parametric hazard function. 
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By default, the bootstrap analysis has 10,000 realizations because this is the maximum number of Monte Carlo 
realizations allowed in the risk analysis. When estimating risk with full uncertainty, one of the 10,000 bootstrapped 
parameter sets is selected at random each Monte Carlo realization (see Algorithm 2). Then, a new parametric 
probability distribution is created from the parameter set. Hazard levels and exceedance probabilities can then be 
computed within the risk analysis for that realization.    

Algorithm 2 – Parametric Function Uncertainty Analysis 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝑅𝑅𝜃𝜃 ←  number of parameter sets 
Where 𝑅𝑅 ≤ 𝑅𝑅𝜃𝜃 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

if sub function within a composite function then  
     Sample uniformly at random with replacement a percentile 𝑟𝑟𝑖𝑖~U(0,1). 
     Sample a parameter set 𝜃𝜃𝑖𝑖∗ from list at index 1 + (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)[𝑟𝑟𝑖𝑖 ∙ 𝑅𝑅𝜃𝜃] 
else 
      Sample a parameter set 𝜃𝜃𝑖𝑖∗ from list at index 𝑖𝑖 
end if 
Create new parametric hazard function 𝐻𝐻𝑖𝑖∗ from sampled parameter set 𝜃𝜃𝑖𝑖∗. 

end for 
Estimate confidence intervals and mean hazard curve from all sampled hazard functions {𝐻𝐻1∗,⋯ ,𝐻𝐻𝑅𝑅∗}. 
 

 

RMC-BestFit 
A parametric hazard function can be imported from the Bayesian estimation and fitting software, RMC-BestFit. 
Technical details on the BestFit software are provided in [21] [22] [23]. 
RMC-BestFit performs Bayesian estimation from a choice of thirteen parametric probability distributions. RMC-BestFit 
outputs the posterior mode and posterior predictive distributions and credible intervals. In addition, by default, RMC-
BestFit outputs 10,000 posterior parameter sets which are used to propagate uncertainty in RMC-TotalRisk. Once 
imported, the BestFit results are stored in the RMC-TotalRisk study file. If the original BestFit results are updated, they 
will have to be re-imported. 

When estimating risk with full uncertainty, one of the 10,000 posterior parameter sets is selected at random each 
Monte Carlo realization as described in Algorithm 2. Then, a new parametric probability distribution is created from the 
parameter set. Hazard levels and exceedance probabilities can then be computed within the risk analysis for that 
realization.    

Nonparametric 
Nonparametric hazard functions are defined with a tabular relationship of hazard levels and exceedance probabilities. 
The nonparametric survival function 𝑆𝑆(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥) and inverse survival function 𝑆𝑆−1(𝑝𝑝) are both computed using 
linear interpolation as follows: 

𝑆𝑆(𝑥𝑥) = 𝑝𝑝𝑖𝑖 + (𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖) �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

� Equation 5 

𝑆𝑆−1(𝑝𝑝) = 𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) �
𝑝𝑝 − 𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖

� Equation 6 

where 𝑆𝑆(𝑥𝑥) is the survival function of the variable 𝑋𝑋; 𝑆𝑆−1(𝑝𝑝) is the inverse survival function where 𝑝𝑝 is an exceedance 
probability; and there is an array of continuous hazard values 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} for 𝑥𝑥𝑖𝑖 < 𝑥𝑥 < 𝑥𝑥𝑖𝑖+1with exceedance 
probabilities 𝒑𝒑 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} with 0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1 and 𝑝𝑝𝑖𝑖 > 𝑝𝑝 > 𝑝𝑝𝑖𝑖+1.  
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In general, extrapolation will not be performed for 𝑝𝑝 values outside the user-defined range of hazard levels. Instead 𝑥𝑥 
values will be flatlined on each side of the table. If 𝑝𝑝 > 𝑝𝑝1, then 𝑥𝑥1 will be returned. Likewise, if 𝑝𝑝 < 𝑝𝑝𝑛𝑛, then 𝑥𝑥𝑛𝑛 will be 
returned. However, there is an option for extrapolation to a rare exceedance probability provided in the HEC-FDA 
nonparametric option discussed in the next section. All hazard functions are numerically integrated between a 
probability of 10−16 and 1 − 10−16, which is sufficiently close to 0 and 1 (see Appendix D). Therefore, to improve the 
accuracy of the risk results and to avoid significant flatlining, it is important to input the tabular relationship so that 
there is sufficient coverage across probabilities.   

There is often a benefit to applying a transform to the hazard and/or probability values to improve the accuracy of the 
linear interpolation. A logarithmic transform can be applied to the hazard.  A logarithmic or Normal 𝑧𝑧 transform can be 
applied to the exceedance probability. 

For example, if the hazard levels increase exponentially in real-space, then they will increase linearly in log-space. In 
this case, a log-transform will improve the accuracy of the linear interpolation of hazard levels. When the hazard levels 
are log-transformed, the inverse survival function becomes: 

𝑆𝑆−1(𝑝𝑝) = log 𝑥𝑥𝑖𝑖 + (log 𝑥𝑥𝑖𝑖+1 − log 𝑥𝑥𝑖𝑖+1) �
𝑝𝑝 − 𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖

� Equation 7 

When the exceedance probabilities are Normal 𝑧𝑧 transformed, the inverse survival function becomes:  

𝑆𝑆−1(𝑝𝑝) = 𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)�
Φ−1(𝑝𝑝) −Φ−1(𝑝𝑝𝑖𝑖)
Φ−1(𝑝𝑝𝑖𝑖+1) −Φ−1(𝑝𝑝𝑖𝑖)

� Equation 8 

where Φ−1(∙) is the inverse CDF of the standard Normal distribution.  

Nonparametric – HEC-FDA 
A nonparametric hazard function can be defined in the same way as the “less simple method” in the flood damage 
reduction analysis software, HEC-FDA [13]. In RMC-TotalRisk, this hazard function is just called the Nonparametric 
hazard function.  

In this method, the user enters a tabular relationship of hazard levels and exceedance probabilities. The uncertainty in 
the hazard level for a given exceedance probability is derived using the asymptotic approximation for quantile 
variance. A detailed proof is provided in [14] and [24]. Additional details related to the HEC-FDA implementation are 
provided in [13]. The variance of a hazard level (quantile) for a given exceedance probability is estimated from: 

𝜎𝜎𝑥𝑥𝑖𝑖
2 =

(1 − 𝑝𝑝𝑖𝑖) ∙ 𝑝𝑝𝑖𝑖
𝑛𝑛 ∙ 𝑓𝑓(𝑥𝑥𝑖𝑖)2

 Equation 9 

where 𝜎𝜎𝑥𝑥𝑖𝑖
2  is the variance of the hazard level 𝑥𝑥𝑖𝑖; 𝑝𝑝𝑖𝑖 is the exceedance probability; 𝑛𝑛 is the effective record length (ERL); 

and 𝑓𝑓(∙) is the nonparametric PDF. As shown in Appendix A, the PDF 𝑓𝑓(∙) is the derivative of the CDF: 

𝑓𝑓(𝑥𝑥𝑖𝑖) =  
𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖)
𝑑𝑑𝑥𝑥𝑖𝑖

=
𝑓𝑓(𝑥𝑥𝑖𝑖 + ℎ) − 𝑓𝑓(𝑥𝑥𝑖𝑖 − ℎ)

2ℎ
  Equation 10 

The derivative is evaluated using numerical differentiation with the two-point formula where ℎ represents a small 
change in 𝑥𝑥𝑖𝑖. To avoid unreasonable PDF and variance results, the quantile variance  𝜎𝜎𝑥𝑥𝑖𝑖

2  computed for the 0.01 
exceedance probability is used for all quantiles larger (𝑝𝑝 < 0.01), and the 𝜎𝜎𝑥𝑥𝑖𝑖

2  for the 0.99 exceedance probability is 
used for all quantiles smaller (𝑝𝑝 < 0.99).  

Like the parametric hazard function, the user must enter the ERL, which is a measure of information content in the fit 
of the distribution. The longer the ERL, the less uncertainty and narrower the confidence intervals.  The user can also 
choose to extrapolate to a rarer exceedance probability. For consistency with HEC-FDA, the default is to perform 
linear extrapolation out to 𝑝𝑝 = 0.0001. If the user defined data already extends beyond 𝑝𝑝 = 0.0001, no extrapolation 
will be performed. Also, by default, linear extrapolation back to 𝑝𝑝 = 0.999 will be performed automatically if the user 
defined data does not already cover this exceedance probability.  
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The uncertainty in the hazard level is automatically set to be Ln-Normal distributed with a real-space mean, 𝜇𝜇 = 𝑥𝑥𝑖𝑖, 
and standard deviation, 𝜎𝜎 = 𝜎𝜎𝑥𝑥𝑖𝑖. This is done to be backwards compatible with existing HEC-FDA models that utilize a 
similar uncertainty routine. However, this type of nonparametric hazard function be too restrictive for complex 
scenarios, such as stage-frequency curves for dams. The Tabular hazard function described in the next section 
provides more flexibility for defining uncertainty. 

The uncertainty analysis for all nonparametric hazard functions is performed as described in Algorithm 3 below. This 
routine describes the case where the hazard level has uncertainty. However, in the Tabular hazard function described 
in the next section, the user can instead choose to model the exceedance probabilities as uncertain while holding the 
hazard levels as fixed. In this case, the uncertainty analysis is performed in the same manner, but with random 
exceedance probabilities rather than random hazard levels. A new nonparametric hazard function is created each 
Monte Carlo realization, which is then used to derive hazard levels and exceedance probabilities in the risk analysis. 

Algorithm 3 – Nonparametric (Tabular) Function Uncertainty Analysis 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝑛𝑛 ←  number of user-specified hazard levels 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

Sample uniformly at random with replacement a percentile 𝑟𝑟𝑖𝑖~U(0,1). 
for 𝑗𝑗 ← 1 to 𝑛𝑛 do 

Generate a hazard level 𝑥𝑥𝑗𝑗∗ =  𝐹𝐹−1�𝑟𝑟𝑖𝑖|𝜃𝜃𝑗𝑗� for tabular ordinate 𝑗𝑗. 
end for 
Create new tabular hazard function 𝐻𝐻𝑖𝑖∗ from output 𝒑𝒑 = {𝑝𝑝1,𝑝𝑝, … ,𝑝𝑝𝑛𝑛} and 𝒙𝒙∗ = {𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑛𝑛∗}. 

end for 
Estimate confidence intervals and mean hazard curve from all sampled hazard functions {𝐻𝐻1∗,⋯ ,𝐻𝐻𝑅𝑅∗}. 
 

 

This uncertainty analysis approach is the same as the approach taken in HEC-FDA for graphical or non-analytic 
relationships. Complete details are provided in section G.3.3 in the HEC-FDA user’s manual [13]. This algorithm is 
restrictive in terms of the possible shapes of the nonparametric distribution that can be randomly generated. This 
could lead to a slight overestimation or underestimation in the variance of the risk results. However, as discussed in 
[13], generalizing the shape of the distribution requires a parametric representation. In the absence of a parametric 
component, this is currently the best algorithm available for nonparametric uncertainty analysis.  

Tabular 
As with the previous nonparametric option, for this method, the user enters a tabular relationship of hazard levels and 
exceedance probabilities. Extrapolation will not be performed for values outside the user-defined range of hazard 
levels.  

In many cases, tabular hazard functions will be derived from external simulation software, such RMC-RRFT or RMC-
RFA. Or for seismic hazards, nonparametric functions are often derived from a probabilistic seismic hazard analysis 
(PSHA) [5]. An example of a seismic hazard function is shown in Figure 6 below. In this case, only the mean hazard 
distribution has been entered and there is no uncertainty. Figure 7 below shows an example of a reservoir stage-
frequency curve from RMC-RFA entered with uncertainty in the exceedance probabilities.  

The user can choose to model the exceedance probabilities as uncertain while holding the hazard levels as fixed, or 
vice versa. A distribution must be selected to define uncertainty. The parameters for the selected distribution must be 
entered for every ordinate in the tabular data. This allows the parameters to vary with hazard levels. The uncertainty 
at each hazard level (or exceedance probability) must be entered such that the confidence intervals are monotonically 
increasing with increasing hazard levels.  
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The following distribution options are available for all tabular functions in RMC-TotalRisk: 

• Deterministic (no uncertainty) 
• Generalized Beta 
• Ln-Normal 
• Normal 
• PERT 
• PERT-Percentile 
• PERT-PercentileZ (when probability is uncertainty) 
• Triangular 
• Truncated Normal 
• Uniform 

For details on these distributions, please see Appendix E.  

 

Figure 6 - Example of a seismic tabular hazard function. 
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Figure 7 - Example of a stage-frequency tabular hazard function with uncertainty. 

RMC-RFA 
A hazard function can be imported from the reservoir frequency analysis software, RMC-RFA. Technical details on the 
RMC-RFA software can be found in [12], [25], and [26]. In RMC-RFA version 1.0.1, there are three simulation types: 

• Full uncertainty 
• Expected curve only 
• Median curve only  

And there are three output frequency curve options: 

• Stage-frequency curve 
• Peak discharge-frequency curve 
• Discharge-duration-frequency curve 

In RMC-TotalRisk, the expected curve and median frequency curve results are imported as a tabular hazard function 
with no uncertainty. The full uncertainty frequency curve results are imported as a tabular hazard function, where the 
uncertainty in the hazard levels for each exceedance probability is modeled with a PERT distribution based on the 
imported confidence interval values. For example, if a RFA simulation produced 90% confidence intervals, then the 
minimum of the PERT will be the 5th percentile and the maximum will be the 95th percentile. The mode is defined 
using the median frequency curve. The use of the PERT in this manner will reduce the confidence interval widths from 
RMC-RFA. Please see the Tabular hazard function section for more details on the tabular function uncertainty 
analysis. This approach with the PERT distribution was taken due to the challenges of importing results from RFA 
version 1.0.1. Importing stochastic simulation results will be more robust in future versions of RFA and TotalRisk. 
Once imported, the RFA results are stored in the RMC-TotalRisk study file. If the original RFA results are updated, 
they will have to be re-imported.  
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Composite 
A composite hazard function can be created by assigning weights (or likelihoods) to a list of hazard functions as 
follows: 

𝐹𝐹(𝑥𝑥) =  �𝜔𝜔𝑖𝑖 ∙ 𝐹𝐹𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥) Equation 11 

where 𝐹𝐹𝑖𝑖(∙) is the CDF for hazard function 𝑖𝑖; and 𝜔𝜔𝑖𝑖 is the weight or likelihood of hazard function 𝑖𝑖, with 0 ≤ 𝜔𝜔𝑖𝑖 ≤ 1 
and ∑ 𝜔𝜔𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 . This type of composite function is traditionally referred to as a mixture distribution [27]. 

In dam safety, it is common practice to evaluate various gate failure or debris blockage scenarios as separate 
simulations in RMC-RFA, and then assigning a likelihood to each scenario. For example, the risk analysis team might 
evaluate the stage-frequency assuming 0%, 10%, 25%, and 50% reduction in spillway discharge capacity due to 
debris blockage. Then, the likelihood of each of these scenarios would be elicited by a group of experts.  

Figure 8 shows an example of a composite stage-frequency curve for four debris blockage scenarios. In this example, 
as shown in Table 1, 0% blockage was given a weight of 0.25, 10% blockage a weight of 0.4, 25% blockage a weight 
of 0.2, and 50% blockage a weight of 0.15. A small amount of debris blockage is considered the most likely scenario 
during a large flood. 

Table 1 - Example of debris blockage weights 

% Blockage % Range  Weight 
0 0 to 5 0.25 
10 5 to 12.5 0.40 
25 12.5 to 37.5 0.20 
50 >37.5 0.15 

 

 
Figure 8 - Example of a composite stage-frequency hazard function for combining debris loading scenarios (weighted mixture). 
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Rather than using weights, a composite hazard function can alternatively be created by combining a list of hazard 
functions using the probability of union, assuming statistical independence between functions. It is common in 
hydrology that annual maximum flood events are composed of events that arise from distinctly different processes. 
For example, in California, annual maximum inflows to a dam might be driven by atmospheric river driven rainfall 
events in the winter or snowmelt events in the spring. Floods arising from rainfall or snowmelt will often have distinctly 
different probability distributions. In this situation, the annual maximum flood event should be viewed as the maximum 
of the annual maximum rainfall driven events 𝑅𝑅 and the annual maximum of the snowmelt driven events 𝑆𝑆 [28]. 

𝐹𝐹(𝑥𝑥) =  𝑃𝑃[𝑋𝑋 = max(𝑅𝑅, 𝑆𝑆) ≤ 𝑥𝑥] = 𝐹𝐹𝑅𝑅(𝑥𝑥) ∙ 𝐹𝐹𝑆𝑆(𝑥𝑥) Equation 12 

where 𝐹𝐹𝑅𝑅(∙) is the CDF of annual maximum rainfall driven floods; and 𝐹𝐹𝑆𝑆(∙) is the CDF of annual maximum snowmelt 
driven floods. This assumes the rainfall and snowmelt driven events are statistically independent from one another. 
Equation 12 can be written more generally for multiple hazard functions as: 

𝐹𝐹(𝑥𝑥) = �𝐹𝐹𝑖𝑖(𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

  Equation 13 

where 𝐹𝐹𝑖𝑖(∙) is the CDF for hazard function 𝑖𝑖. In USACE, Equation 12 and Equation 13, respectively, are typically 
written in terms of the probability of union of exceedance probabilities [29] as follows: 

𝑆𝑆(𝑥𝑥) = 𝑃𝑃[𝑋𝑋 = max(𝑅𝑅, 𝑆𝑆) > 𝑥𝑥] = 𝑆𝑆𝑅𝑅(𝑥𝑥) + 𝑆𝑆𝑆𝑆(𝑥𝑥) − 𝑆𝑆𝑅𝑅(𝑥𝑥) ∙ 𝑆𝑆𝑆𝑆(𝑥𝑥)  Equation 14 

𝑆𝑆(𝑥𝑥) = 1 −�[1 − 𝑆𝑆𝑖𝑖(𝑥𝑥)]
𝑛𝑛

𝑖𝑖=1

  Equation 15 

where 𝑆𝑆𝑅𝑅(∙) is the survival function, 1 − 𝐹𝐹𝑅𝑅(∙), of annual maximum rainfall driven floods; and 𝑆𝑆𝑆𝑆(∙) is the survival 
function of annual maximum snowmelt driven floods; and 𝑆𝑆𝑖𝑖(∙) is the survival function, 1 − 𝐹𝐹𝑖𝑖(∙), for hazard function 𝑖𝑖.  
Please see Appendix A for more details on the probability of union. 

Figure 9 shows an example of a composite flow-frequency curve for combining rainfall and snowmelt driven flow-
frequency curves. When combining hazard functions with a weighted mixture (Equation 11), the composite function 
will be the weighted average of the list of marginal hazard functions. However, when combining hazard functions with 
the probability of union (Equation 15), the composite function will always be greater than or equal to the most severe 
of the marginal hazard functions.  DRAFT
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Figure 9 - Example of a composite flow-frequency hazard function for combining two flood driving mechanisms (probability of 
union). 

 

The uncertainty analysis for the composite hazard functions is performed as described in Algorithm 4. This algorithm 
describes the routine given a single hazard level of interest, but it can easily be extended to include a list of hazard 
levels to evaluate. When simulating risk with full uncertainty, a new composite hazard function is created each Monte 
Carlo realization, which is then used to derive hazard levels and exceedance probabilities in the risk analysis. The 
confidence interval shown in Figure 10 below were created using this algorithm.  

Algorithm 4 – Composite Hazard Function Uncertainty Analysis 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝑛𝑛 ←  number of hazard functions 
𝑥𝑥 ←  hazard level to evaluate 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

if mixture then 𝑝𝑝𝑖𝑖∗ = 0 else 𝑝𝑝𝑖𝑖∗ = 1 
for 𝑗𝑗 ← 1 to 𝑛𝑛 do 
      Sample uniformly at random with replacement a percentile 𝑟𝑟𝑖𝑖~U(0,1). 

            Sample a random hazard function 𝐹𝐹𝑗𝑗∗ given 𝑟𝑟𝑖𝑖 
if mixture then 𝑝𝑝𝑖𝑖∗ ←  𝑝𝑝𝑖𝑖∗ +  𝜔𝜔𝑗𝑗 ∙ 𝐹𝐹𝑗𝑗∗(𝑥𝑥|𝑟𝑟𝑖𝑖) else 𝑝𝑝𝑖𝑖∗ ←  𝑝𝑝𝑖𝑖∗ ∙ 𝐹𝐹𝑗𝑗∗(𝑥𝑥|𝑟𝑟𝑖𝑖) 

end for 
end for 
Estimate confidence intervals and mean non-exceedance probability for 𝑥𝑥 from {𝑝𝑝1∗,⋯ ,𝑝𝑝𝑅𝑅∗ }. 
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Figure 10 - Example of a composite flow-frequency hazard function for combining two flood driving mechanisms (probability of 
union) with uncertainty. 
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Transform Functions 
In RMC-TotalRisk, a transform function can be used to transform (or convert) the hazard levels from one type of 
function to another. Transforming hazard levels is also referred to as function composition. In mathematics, function 
composition is an operation that takes two functions 𝑓𝑓 and 𝑔𝑔, and creates a function ℎ as follows: 

ℎ(𝑥𝑥) = 𝑔𝑔�𝑓𝑓(𝑥𝑥)�  Equation 16 

For example, a peak flow-frequency function 𝑓𝑓(∙) can be transformed to a stage-frequency function ℎ(∙) using a flow-
to-stage rating curve 𝑔𝑔(∙). Transform functions can be used to transform hazard levels for hazard functions, other 
transform functions, and system response functions. The following subsections describe the various transform 
function options in RMC-TotalRisk. 

Linear 
Hazard levels can be transformed using a simple linear equation: 

ℎ(𝑥𝑥) = 𝑦𝑦 =  𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝜀𝜀  Equation 17 

where 𝑥𝑥 is the hazard level; 𝑦𝑦 is the transformed hazard level; 𝛼𝛼 is the intercept coefficient; 𝛽𝛽 is the slope coefficient; 
and 𝜀𝜀 is the model error, or residual, which is assumed to be normal and independently distributed (NID) with zero 
mean and standard error 𝜎𝜎, or  𝜀𝜀 ~ Φ(0,𝜎𝜎). When simulating risk with full uncertainty, linear transform functions are 
sampled from a Normal distribution based on the specified standard error as shown in Algorithm 5.   

Algorithm 5 – Linear Transform Function Uncertainty Analysis 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝑥𝑥 ←  hazard level to evaluate 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

Sample uniformly at random with replacement a percentile 𝑟𝑟𝑖𝑖~U(0,1) 
𝑦𝑦𝑖𝑖∗ ←  𝛼𝛼 + 𝛽𝛽𝛽𝛽 + Φ−1(𝑟𝑟𝑖𝑖|0,𝜎𝜎) 

end for 
Estimate confidence intervals and mean transformed hazard for 𝑥𝑥 from {𝑦𝑦1∗,⋯ ,𝑦𝑦𝑅𝑅∗}. 
 

 

The parameters of this linear equation can be estimated using the ordinary least squares (OLS) method for simple 
linear regression as follows: 

𝛽𝛽 =  
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1

  Equation 18 

𝛼𝛼 = 𝑦𝑦� − 𝛽𝛽𝛽𝛽  Equation 19 

𝜎𝜎 =  �
1

𝑛𝑛 − 2
�(𝑦𝑦𝑖𝑖 − 𝛼𝛼 − 𝛽𝛽𝑥𝑥𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 Equation 20 

Where 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is the array of independent data; 𝒚𝒚 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛} is the array of dependent data; 𝑥̅𝑥 is the 
mean of 𝒙𝒙; and 𝑦𝑦� is the mean of 𝒚𝒚.  
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An example of a linear transform function with is provided in Figure 11. This example transforms flow (cfs) to stage (ft) 
and has an intercept (𝛼𝛼) of 10, a slope (𝛽𝛽) of 0.5, and a standard error (𝜎𝜎) of 20. 

 
Figure 11 - Example of a linear transform function. 

Power 
Hazard levels can be transformed using a power function: 

ℎ(𝑥𝑥) = 𝑦𝑦 = 𝛼𝛼(𝑥𝑥 − 𝜉𝜉)𝛽𝛽 ∙ 𝜀𝜀  Equation 21 

where 𝑥𝑥 is the hazard level; 𝑦𝑦 is the transformed hazard level; 𝛼𝛼 is the intercept coefficient; 𝛽𝛽 is the exponent 
coefficient; 𝜉𝜉 is the location; and 𝜀𝜀 is the model error, or residual, which is assumed to be log-normal and 
independently distributed (NID) with zero log-space mean and log-space standard error 𝜎𝜎, or  log 𝜀𝜀  ~ Φ(0,𝜎𝜎).  

To estimate the parameters for this function, the 𝑋𝑋 and 𝑌𝑌 data should first be log-transformed so that the model 
becomes a simple linear equation: 

log 𝑦𝑦 =  log𝛼𝛼 + 𝛽𝛽 log(𝑥𝑥 − 𝜉𝜉) + log 𝜀𝜀  Equation 22 

Then, the parameters can be estimated using OLS as described in the previous section. The value of both 𝑦𝑦 and 
(𝑥𝑥 − 𝜉𝜉) must be greater than zero. When simulating risk with full uncertainty, power transform functions are sampled 
from a Normal distribution using Equation 22 with Algorithm 5 from the previous section. For example, a random 
power transform function at the 0.9 percentile is created as follows: 

𝑦𝑦𝑖𝑖 =  𝑒𝑒�log𝛼𝛼+𝛽𝛽 log(𝑥𝑥𝑖𝑖−𝜉𝜉)+Φ−1(0.9|0,𝜎𝜎)�   (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  Equation 23 
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There is also an option to use the inverse of Equation 21. For example, a flow-stage rating curve might be estimated 
with stage as the 𝑥𝑥 variable and flow as the 𝑦𝑦. The inverse power transform function is as follows: 

𝑦𝑦 = �
𝑥𝑥
𝛼𝛼 ∙ 𝜀𝜀

�
1
𝛽𝛽 + 𝜉𝜉  Equation 24 

As before, a random inverse power transform function is created as: 

𝑦𝑦𝑖𝑖 =  �
𝑥𝑥𝑖𝑖

𝑒𝑒{log𝛼𝛼+Φ−1(0.9|0,𝜎𝜎)}�
1
𝛽𝛽 + 𝜉𝜉   (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  Equation 25 

An example of an inverse power transform function is provided in Figure 11. This example transforms flow (cfs) to 
stage (ft) and has an intercept coefficient (𝛼𝛼) of 10, an exponent coefficient (𝛽𝛽) of 2, a location coefficient (𝜉𝜉) of 0, 
and a standard error (of log) (𝜎𝜎) of 0.1.  

 
Figure 12 - Example of a power transform function. 

Tabular 
Hazard levels can be transformed using a tabular (or non-parametric) relationship of hazard levels and transformed 
hazard levels. The transformation is performed with linear interpolation: 

ℎ(𝑥𝑥) = 𝑦𝑦 = 𝑦𝑦𝑖𝑖 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖) �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

�  Equation 26 

where 𝑥𝑥 is an array of hazard values 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} for 𝑥𝑥𝑖𝑖 < 𝑥𝑥 < 𝑥𝑥𝑖𝑖+1; and 𝑦𝑦 is an array of transformed hazard 
values 𝒚𝒚 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛} for 𝑦𝑦𝑖𝑖 ≤ 𝑦𝑦 ≤ 𝑦𝑦𝑖𝑖+1. Extrapolation will not be performed for 𝑥𝑥 values outside the user-defined 
range of hazard levels. A log-transform can be applied to both the 𝑥𝑥 and 𝑦𝑦 values to improve the accuracy of the 
interpolation. 
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A flow-stage rating curve will likely be derived by a hydraulic model, such as HEC-RAS. The modeled flow-vs-stage 
results can then be entered as tabular data into RMC-TotalRisk. An example of a tabular transform function is 
provided in Figure 13. Uncertainty can be defined for the transformed hazard for each tabular ordinate. A distribution 
must be selected to define uncertainty, and the parameters for the selected distribution must be entered for every 
ordinate in the tabular data. The uncertainty at each hazard level must be entered such that the confidence intervals 
are monotonically increasing with increasing hazard levels. 

 

Figure 13 - Example of a tabular transform function. 

 

When simulating risk with full uncertainty, tabular transform functions are sampled in the same manner as described 
in Algorithm 3. A new tabular transform function is created each Monte Carlo realization, which is then used to derive 
transformed hazard levels in the risk analysis.  
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System Response Functions 
A system response function describes the conditional probability of failure of the system for various hazard levels, 
such as water surface elevations. System response functions are sometimes referred to as fragility curves.  

Most engineering risk problems involve two opposing factors: a resistance (or capacity) 𝑅𝑅 at hazard level 𝑥𝑥, and the 
load (or demand) 𝑆𝑆 at hazard level 𝑥𝑥. When the load exceeds the resistance, failure occurs. It is important to note that 
he word “failure” does not necessarily imply fracture, breach, or collapse of the structure or system being evaluated. 
The term here is used in the general sense, meaning that the system fails to meet the demand placed on it. In 
engineering reliability analysis this is referred to as the limit state, which indicates general unsatisfactory performance, 
not just failure.  

In engineering reliability analysis, the annual probability of failure 𝑝𝑝𝐹𝐹 of a system is defined as the probability that the 
resistance is less than or equal to a specific load: 

𝑝𝑝𝐹𝐹 =  𝑃𝑃(𝑅𝑅 ≤ 𝑆𝑆)  Equation 27 

𝑝𝑝𝐹𝐹 =  � 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑠𝑠|𝑠𝑠) ∙ 𝑓𝑓𝑆𝑆(𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

 
 Equation 28 

where 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑠𝑠|𝑠𝑠) is the conditional CDF of 𝑅𝑅 given the demand 𝑆𝑆 = 𝑠𝑠, and 𝑓𝑓𝑆𝑆(𝑠𝑠) is the marginal PDF of 𝑆𝑆, or hazard 
function distribution. For more details, the R-S Reliability Formulation of Risk section provides a formal derivation of 
Equation 28.  

In RMC-TotalRisk, the system response function models the distribution of the resistance given a specific hazard level 
(or demand). Or stated another way, the response function is the CDF for the resistance of the system. The 
conditional probability of failure, or system response probability (SRP), is the probability that the resistance is less 
than or equal to a specific load: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑠𝑠|𝑠𝑠) = 𝑃𝑃(𝑅𝑅 ≤ 𝑆𝑆|𝑆𝑆 = 𝑠𝑠)  Equation 29 

All system response functions in RMC-TotalRisk are modeled as a continuous random variable (see Appendix A).  
As such, each have a probability density function (PDF), 𝑓𝑓(𝑥𝑥), a cumulative distribution function (CDF), 𝐹𝐹(𝑥𝑥), a 
survival function, 𝑆𝑆(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥), and an inverse CDF, 𝐹𝐹−1(𝑝𝑝). However, there is an important distinction to be 
made.  

In most risk analyses, the conditional probabilities of failure will be strictly increasing with increasing hazard levels. 
However, there are scenarios where the resistance of a dam or levee is really a multivariate function of different 
hazards. For example, consider a levee with flooding on the river side (headwater) and on the interior drainage side 
(tailwater). The height of both the headwater and tailwater will affect the probability of failure for an internal erosion 
failure mode. There is a possibility that the probability of failure can decrease with high river stages because tailwater 
on the interior of the levee is strongly positively correlated with the extreme riverine flooding. The higher tailwater 
levels increase the resistance and decrease the probability of failure for that type of failure mode.  

Given the potential for these types of complex multivariate scenarios, and to allow for flexibility, RMC-TotalRisk does 
not require the probabilities of nonparametric system response functions to be strictly increasing. In addition, the 
probabilities do not need to be exhaustive, i.e., they do not need to be cumulative from 0 to 1.  

System response functions can be defined as either a parametric or nonparametric distribution. A parametric 
distribution has a theoretical mathematical form, with input parameters, that describes how the probabilities are 
distributed over the values of a random variable. A nonparametric probability distribution makes very few assumptions 
about the underlying theoretical model, and it is based on empirical or simulated data. The following subsections 
describe the various response function options in RMC-TotalRisk. 
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Parametric 
A response function can be defined with a parametric probability distribution. The following distribution options are 
available for parametric response functions: 

• Exponential 
• Gamma 
• Logistic 
• Ln-Normal 
• Log-Normal (base 10) 
• Normal 
• Weibull 

For details on these distributions, please see Appendix E. Parametric distributions can be estimated from distribution 
fitting software, such as RMC-BestFit, HEC-SSP, or other various commercial software.   

As discussed in the parametric hazard function section, the parametric bootstrap [15] [16] is used to quantify 
uncertainty in the parametric response function, as described in Algorithm 1. The user must enter an effective record 
length (ERL), which is a measure of information content in the fit of the distribution. The longer the ERL, the less 
uncertainty and narrower the confidence intervals.  

By default, the bootstrap analysis has 10,000 realizations because this is the maximum number of Monte Carlo 
realizations allowed in the risk analysis. When estimating risk with full uncertainty, one of the 10,000 bootstrapped 
parameter sets is selected at random each Monte Carlo realization (see Algorithm 2) Then, a new parametric 
probability distribution is created from the parameter set. The response probability given a hazard level can then be 
computed within the risk analysis for that realization.    

An example of a parametric hazard is provided in Figure 5. This figure shows a Ln-Normal distribution for the 
probability of failure given annual maximum peak river stage (ft) with a mean of 10, standard deviation of 2, and an 
ERL of 30. 

 
Figure 14 - Example of a parametric response function. 
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Nonparametric 
Tabular 
Response functions can be defined with a tabular (or nonparametric) relationship of hazard levels and conditional 
probabilities of failure. The tabular response function is computed using linear interpolation as follows: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑝𝑝𝑖𝑖 + (𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖) �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

� Equation 30 

where 𝑃𝑃(𝐹𝐹|𝑥𝑥) returns the conditional probability of failure for a given hazard level 𝑥𝑥; and there is an array of 
continuous hazard values 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} for 𝑥𝑥𝑖𝑖 < 𝑥𝑥 < 𝑥𝑥𝑖𝑖+1with conditional probabilities 𝒑𝒑 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} with 0 ≤
𝑝𝑝𝑖𝑖 ≤ 1. The conditional probabilities do not need to be in any strict order, but it is typical that in most cases the 
probabilities will be increasing with increasing hazard levels. In addition, the probabilities do not need to be 
exhaustive, i.e., the do not need to be cumulative from 0 to 1.   

There is often a need to apply a transform to the hazard and probability values to improve the accuracy of the linear 
interpolation. A log-transform can be applied to the 𝒙𝒙 and/or 𝒑𝒑 values. In addition, a Normal 𝑧𝑧 transform can be 
applied to the 𝒑𝒑 values.  

Uncertainty can be defined for the probability of failure for each tabular ordinate. A distribution must be selected to 
define uncertainty, and the parameters for the selected distribution must be entered for every ordinate in the tabular 
data. An example of a tabular response function with uncertainty defined with a triangular distribution provided in 
Figure 15. 

The uncertainty analysis for the tabular response function is performed as described in Algorithm 3. When simulating 
risk with full uncertainty, a new tabular response function is created each Monte Carlo realization, which is then used 
to derive the probability of failure given a hazard level in the risk analysis.  

 

Figure 15 - Example of a tabular response function with uncertainty. 

 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
26 

 

Bivariate 
A bivariate response function provides a simple way to define a tabular response function that is conditional on two 
hazards. The response probability of a bivariate response function is derived from the total probability theorem (see 
Appendix A).  

𝑃𝑃(𝐹𝐹|𝑥𝑥) =  �𝑃𝑃(𝐹𝐹|𝑥𝑥,𝑦𝑦𝑖𝑖) ∙ 𝑃𝑃(𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

  Equation 31 

where 𝑃𝑃(𝐹𝐹|𝑥𝑥) is the conditional probability of failure given the primary hazard level 𝑥𝑥; 𝑃𝑃(𝐹𝐹|𝑥𝑥,𝑦𝑦𝑖𝑖) is the conditional 
probability of failure given the primary hazard level 𝑥𝑥 and secondary hazard 𝑦𝑦𝑖𝑖; and 𝑃𝑃(𝑦𝑦𝑖𝑖) is the likelihood of the 
secondary hazard level 𝑦𝑦𝑖𝑖. The summation in Equation 31 can be interpreted as a weighted sum, and as such 𝑃𝑃(𝐹𝐹|𝑥𝑥) 
is sometimes called the expected or total probability. 

The bivariate response function is best understood through an example. Seismic failure modes for dams are often 
conditional on the water surface elevation (or stage) in the reservoir when the earthquake occurs, and the peak 
ground acceleration (PGA) of the earthquake. Table 2 shows the nonexceedance probabilities for various PGA hazard 
levels. Table 3 shows an example bivariate response table for the seismic failure mode. In the case, the primary 
hazard is reservoir stage (ft). The secondary hazard is the PGA, which is usually expressed in terms of gravity, or g 
[5]. The likelihood (or weight) of each PGA scenario is provided Table 4.  As shown in Table 4, the weights are 
computed as the probability of being within an interval 𝑃𝑃(𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏).  

Table 2 – Nonexceedance probabilities for peak ground accelerations. 

Peak Ground 
Acceleration (g) 𝑷𝑷(𝑿𝑿 ≤ 𝒙𝒙) 

0.2 0.9989760 
0.3 0.9995930 
0.4 0.9997920 
0.5 0.9998830 
0.6 0.9999308 
0.7 0.9999579 
0.8 0.9999736 
0.9 0.9999832 
1.0 0.9999893 

 

Table 3 – Example bivariate response table for a seismic failure mode. 

 Peak Ground Acceleration (g) 
0.2  0.4 0.6 0.8 

St
ag

e 
(ft

) 

2560.0 6.00E-09 3.60E-06 3.06E-05 5.39E-05 
2585.5 3.10E-06 1.86E-03 1.58E-02 2.78E-02 
2590.0 1.13E-05 6.75E-03 5.74E-02 1.01E-01 
2605.5 4.58E-05 2.75E-02 2.34E-01 4.11E-01 
2611.0 7.20E-05 4.32E-02 3.67E-01 6.47E-01 
2633.5 9.07E-05 5.44E-02 4.62E-01 8.14E-01 

 

Table 4 - Likelihoods (or weights) of secondary hazard levels. 

Secondary Hazard Levels 
PGA (g) Range 𝑷𝑷(𝒂𝒂 ≤ 𝑿𝑿 ≤ 𝒃𝒃) Weight 

0.2 0.0 to 0.3 𝑃𝑃(0 ≤ 𝑋𝑋 ≤ 0.3) = 0.999593 9.99593E-01 
0.4 0.3 to 0.5 𝑃𝑃(0.3 ≤ 𝑋𝑋 ≤ 0.5) = 0.999883 − 0.999593 = 0.00029 2.90000E-04 
0.6 0.5 to 0.7 𝑃𝑃(0.5 ≤ 𝑋𝑋 ≤ 0.7) = 0.9999579 − 0.9998830 = 0.0000749 7.49000E-05 
0.8 >0.7 𝑃𝑃(0.7 ≤ 𝑋𝑋 ≤ ∞) = 1 − 0.9999579 = 0.0000427 4.21000E-05 

 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
27 

 

Each column in Table 3 can be viewed as a single tabular response function, 𝐹𝐹𝑖𝑖(∙) , one for each PGA level 𝑖𝑖. Then, 
Equation 31 can be rewritten as a mixture distribution as follows: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) =  �𝜔𝜔𝑖𝑖 ∙ 𝐹𝐹𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥)  Equation 32 

where 𝐹𝐹𝑖𝑖(∙) is the response function for each secondary hazard level 𝑖𝑖; and 𝜔𝜔𝑖𝑖 is the weight or likelihood of the 
secondary hazard level 𝑖𝑖, with 0 ≤ 𝜔𝜔𝑖𝑖 ≤ 1 and ∑ 𝜔𝜔𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 .   

The bivariate response function from Table 3 is shown in Figure 16. Weights can be entered manually or 
automatically derived based on the selected secondary hazard function. Uncertainty cannot be modeled with the 
bivariate response function. If there is a desire to include uncertainty, the composite response function should be used 
instead.  

 
Figure 16 - Example of bivariate response function for a seismic failure mode. 
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Event Tree 
A response function can be defined from an event tree. Event tree analysis (ETA) represent the logic of how an 
initiating event, like a flood or earthquake, can lead to various types of damage and failure [30]. It is common practice 
to develop detailed event trees for individual PFMs to clearly identify the full sequence of steps required to obtain 
failure or breach. Each identified PFM is decomposed into a sequence of component events and conditions that must 
occur for there to be a failure. This ensures that due consideration is given to each event in the failure sequence [5]. 

Terminology 
This section provides definitions for the event tree terminology used commonly in quantitative risk analyses. Similar 
terms and definitions are provided in [5] and [30]. 

• Node: A branching point in the event tree that signifies a random event in the event tree. This is also 
commonly referred to as an event or state. There are four basic node types that define the event tree:  

 Initiating Hazard Node: Always the first node in an event tree. This node defines the hazard levels. It is 
crucial to relating system response probabilities to the hazard function. For a more accurate assessment 
of risk, probabilities should be defined for enough hazard levels to cover nearly the entirety of probability 
space. Only hazard levels are entered for this node, not hazard exceedance probabilities.  

 Chance Node: Represents the probability that the given event will occur for each hazard level defined in 
the initiating hazard node. Probabilities can be defined as a single value for all hazard levels (Single 
Value), unique for each hazard level (Multi Value), or from another source (see reference node below). 
This is the most fundamental component of an event tree.  

 Reference Node: The reference node performs the same task as a chance probability node except that 
instead of probability being defined at the node itself, it is defined using a previously added response 
function or node in the event tree. The selected function or node can be sampled independently or the 
same for all references to the source.  

 Remainder Node: This node represents the probability that remains when all other chance node and 
reference node probabilities for the current branching point are considered. For example, from a given 
event with two potential outcomes the remainder node represents the probability that neither of the 
potential outcomes occurs. The remainder probability is computed automatically and is not set by the 
user.  

• Branch: The line that connects two nodes together.  
 

• End Node: A node that has no downstream branches. The end node defines the end state for a sequence of 
events. This is also commonly referred to as a leaf node or terminal node.  
 

• Pathway: A unique sequence of events representing a possible failure progression. The probability of this 
pathway occurring is computed as the joint probability of each node in the series that connects the initiating 
hazard node to the end node. This is also commonly referred to as path, sequence, connections, or root-to-
node.  
 

• Upstream Nodes: All nodes to the left of a selected node in the tree. The upstream nodes of the selected 
node must occur prior to the selected node event. This is also commonly referred to as parent node, 
conditional events, or preceding nodes.  
 

• Downstream Nodes: All nodes to the right of a selected node in the tree. The downstream nodes occur after 
the selected node event. This is also commonly referred to as child node, conditional events, or proceeding 
nodes, or subsequent nodes. 
 

• Node Probability: The probability that the selected node event occurs conditioned on the occurrence of the 
upstream nodes in the tree.   
 

• Event Likelihood: The likelihood, or probability, of a node occurring in the event tree for a given hazard level. 
This is the joint probability of the selected node event and all the upstream nodes occurring.  
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Event Probability 
A conceptual event tree is shown below in Figure 17. A sequence of events is characterized in an ETA as nodes 
connected by branch lines where each node represents an event or state. The sequence of events along a branch, 
going from left to right, is referred to as a pathway. All nodes can have multiple downstream nodes, each with their 
own branches and pathways. In Figure 17, the sequence {𝑥𝑥,𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4,𝑃𝑃5} represents a pathway to failure.  

If a node does not have any downstream nodes, it is considered a leaf node and represents the end state of the tree, 
e.g., breach or component failure leading to consequences. In Figure 17, the chance node 𝑝𝑝5 is a leaf node 
representing the pathway to failure. Each remainder node in this example represents a pathway to non-failure. The 
remainder node 𝑟𝑟5 represents a leaf node for non-failure. 

 
Figure 17 - Conceptual event tree diagram. 

All nodes, except the initiating event node, have a single upstream node. An upstream node defines the event that 
must occur prior to occurrence of the selected branch node. Probability estimates can be uniquely specified at each 
node (typically from expert elicitation), reference another node in the event tree, or reference another system 
response function in the TotalRisk project. Nodal probabilities are conditional estimates given the preceding event has 
occurred and are defined as follows: 

𝑃𝑃1 = 𝑃𝑃(𝐸𝐸1|𝑥𝑥)  Equation 33 

where 𝑃𝑃1 is the probability of event 𝐸𝐸1 occurring given the initiating event 𝑥𝑥. Similarly, the probability of event 𝐸𝐸2 is: 

𝑃𝑃2 = 𝑃𝑃(𝐸𝐸2|𝑥𝑥,𝐸𝐸1)  Equation 34 

so on and so forth. The probability of failure 𝑃𝑃(𝐹𝐹|𝑥𝑥) is then estimated as the joint probability of all events occurring in 
the sequence  {𝑥𝑥,𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4,𝑃𝑃5}: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃(𝐸𝐸1 ∩ 𝐸𝐸2 ∩ 𝐸𝐸3 ∩ 𝐸𝐸4 ∩ 𝐸𝐸5)
= 𝑃𝑃(𝐸𝐸1|𝑥𝑥) ∙ 𝑃𝑃(𝐸𝐸2|𝑥𝑥,𝐸𝐸1) ∙ 𝑃𝑃(𝐸𝐸3|𝑥𝑥,𝐸𝐸1,𝐸𝐸2) ∙ 𝑃𝑃(𝐸𝐸4|𝑥𝑥,𝐸𝐸1,𝐸𝐸2,𝐸𝐸3)
∙ 𝑃𝑃(𝐸𝐸5|𝑥𝑥,𝐸𝐸1,𝐸𝐸2,𝐸𝐸3,𝐸𝐸4) 

 Equation 35 

which is known as the multiplication rule or chain rule for probability (see Appendix A). Equation 35 can be written 
more generally as: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃 ��𝐸𝐸𝑖𝑖|𝑥𝑥
𝑛𝑛

𝑖𝑖=1

� = �𝑃𝑃𝑖𝑖|𝑥𝑥
𝑛𝑛

𝑖𝑖=1

  Equation 36 

Initiating Event (𝑥𝑥)

Chance Node (𝑃𝑃)
Remainder Node (𝐹𝐹)
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Each pathway 𝑗𝑗 downstream of a node must be mutually exclusive and collectively exhaustive. Figure 18 shows an 
example where there are three pathways to failure after event 𝐸𝐸1, which are highlighted with the red box.  

 
Figure 18 - Event tree diagram showing an example of multiple downstream nodes and possible pathways. 

Following from the addition rule (see Appendix A), the probability that any of the events occur downstream of a node 
is the sum of each branch probability originating from the node. The sum of branch node probabilities must not 
exceed one. The remaining probability 𝑟𝑟 from any node 𝑖𝑖 is the probability that none of the proceeding events occur, 
also called the compliment or probability of non-occurrence. The following equation is used to automatically calculate 
the remaining probability: 

𝑟𝑟𝑖𝑖|𝑥𝑥 = 1 − 𝑃𝑃��𝐸𝐸𝑖𝑖,𝑗𝑗|𝑥𝑥
𝑚𝑚

𝑗𝑗=1

� = 1 −�𝑃𝑃𝑖𝑖,𝑗𝑗|𝑥𝑥
𝑚𝑚

𝑗𝑗=1

  Equation 37 

where 𝑟𝑟𝑖𝑖 is the probability that no proceeding event nodes occur after event node 𝑖𝑖; and 𝑷𝑷𝑖𝑖 = �𝑃𝑃𝑖𝑖,1,𝑃𝑃𝑖𝑖,2,⋯𝑃𝑃𝑖𝑖,𝑚𝑚� is a 
vector of node probabilities from each branch originating from node 𝑖𝑖 for hazard level 𝑥𝑥. 

Response Function 
As discussed above, the likelihood of a node event occurring is conditional on the occurrence of all preceding events 
in the tree. Because the node probabilities are conditional on the preceding events occurrence, the probability of a 
node occurring given the initiating event for any node is the product of all node probabilities connecting the initiating 
event and target node. In other words, since each node event is conditional on the preceding event occurring, the 
probability of any node event occurring is the product of each probability in sequence from the initiating event to the 
event in question. Therefore, the probability of failure for a pathway 𝑗𝑗 for an initiating event 𝑥𝑥𝑘𝑘 is computed as: 

𝑃𝑃(𝐹𝐹|𝑥𝑥𝑘𝑘)𝑗𝑗 = 𝑃𝑃 ��𝐸𝐸𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑘𝑘� = �𝑃𝑃𝑖𝑖,𝑗𝑗|
𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑘𝑘   Equation 38 

where 𝑥𝑥𝑘𝑘 is the initiating event (or hazard level); and 𝑷𝑷 is a vector of node probabilities connecting the initial event 𝑥𝑥𝑘𝑘  
to node event 𝑖𝑖 moving from left to right on the pathway 𝑗𝑗. An example calculation is shown in Figure 19 below. 
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Figure 19 - Event tree diagram showing the calculation for likelihood of a node occurring given the initiating event. 

 

The total probability of failure given an initiating event 𝑥𝑥𝑘𝑘 is the sum of the likelihood of each chance leaf node 
occurring. Each chance leaf node represents the end state (e.g., breach, component failure, etc.) that leads to 
consequences. The probability of failure, or system response probability (SRP), for initiating event 𝑥𝑥𝑘𝑘 is given by:  

𝑃𝑃(𝐹𝐹|𝑥𝑥𝑘𝑘) = 𝑃𝑃��𝐸𝐸𝑖𝑖,𝑗𝑗|𝑥𝑥
𝑚𝑚

𝑗𝑗=1

� = �𝑃𝑃(𝐹𝐹|𝑥𝑥𝑘𝑘)𝑗𝑗

𝑚𝑚

𝑗𝑗=1

  Equation 39 

A generalized equation can be defined by combining Equation 38 and Equation 39 using the sum-product formulation: 

𝑃𝑃(𝐹𝐹|𝑥𝑥𝑘𝑘) = 𝑃𝑃���𝐸𝐸𝑖𝑖,𝑗𝑗|𝑥𝑥𝑘𝑘
𝑖𝑖𝑗𝑗

� = ��𝑃𝑃𝑖𝑖,𝑗𝑗|𝑥𝑥𝑘𝑘
𝑖𝑖𝑗𝑗 

  Equation 40 

The system response is evaluated over a range of monotonically increasing hazard levels (initiating events), such as 
water surface elevations. The range of hazard levels and associated SRPs are treated as a tabular (nonparametric) 
response function. An example of a system response function derived from an event tree is shown in Figure 20 below. 

Uncertainty Analysis 
The probability values assigned at chance nodes can be defined with uncertainty. Monte Carlo sampling is used to 
account for the uncertainty in node probabilities. Random samples are defined for each chance node in the event tree. 
If the event tree contains reference nodes and the reference node is set to be sampled independently, that reference 
node will get a unique sample. Otherwise, the reference node will receive the same random sample as the referenced 
function. The probability distribution, or reference function, at each node is then sampled to get discrete probabilities 
at each node for each hazard level defined. Once each node has a discrete probability sampled, the system response 
probability is calculated using Equation 40 above at each hazard level to define the system response function. 
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Figure 20 - Example system response function in RMC-TotalRisk. 

 

Since each chance node in the event tree can have a probability distribution, there is the possibility that the branch 
node probabilities will sum greater than one during the Monte Carlo simulation. If this occurs, the branch node 
probabilities are normalized to sum to exactly one. If during the uncertainty analysis normalization is required, a 
warning message will be sent to the user. If normalization is required during the simulation, the following equation is 
used to automatically calculate the remaining probability: 

𝑟𝑟𝑖𝑖|𝑥𝑥 = 1 −�𝑧𝑧𝑖𝑖,𝑗𝑗
𝑗𝑗

|𝑥𝑥  Equation 41 

where 𝑟𝑟𝑖𝑖 is the probability that no proceeding event nodes occur after event node 𝑖𝑖; and 𝒛𝒛𝑖𝑖 = �𝑧𝑧𝑖𝑖,1, 𝑧𝑧𝑖𝑖,2,⋯𝑧𝑧𝑖𝑖,𝑚𝑚� is a 
vector of normalized node probabilities from each branch originating from node 𝑖𝑖. The following equation is used to 
normalize multiple branch probabilities: 

𝑧𝑧𝑖𝑖,𝑗𝑗 =  𝑃𝑃𝑖𝑖,𝑗𝑗 ,                   �𝑃𝑃𝑖𝑖,𝑗𝑗
𝑗𝑗

 ≤ 1 

𝑧𝑧𝑖𝑖,𝑗𝑗 =
𝑃𝑃𝑖𝑖,𝑗𝑗
∑ 𝑃𝑃𝑖𝑖,𝑗𝑗𝑗𝑗

 ,             �𝑃𝑃𝑖𝑖,𝑗𝑗
𝑗𝑗

> 1 

 Equation 42 

where 𝑧𝑧𝑖𝑖,𝑗𝑗 is the normalized node probability and 𝑷𝑷𝑖𝑖 = �𝑃𝑃𝑖𝑖,1,𝑃𝑃𝑖𝑖,2,⋯𝑃𝑃𝑖𝑖,𝑚𝑚� is a vector of unadjusted probability values 
sampled at each branch originating from a single event node 𝑖𝑖 with 0 ≤ 𝑃𝑃𝑖𝑖,𝑗𝑗 ≤ 1.  An example of the remaining 
probability calculation for both conditions in Equation 42 above is shown in Figure 21 below. 
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Figure 21 - Event tree diagram showing remainder probability calculations with multiple branch node probabilities that sum to less 
than and greater than one. 

 

An algorithm for calculating the system response function with confidence intervals is shown below. This algorithm 
describes the routine given a single hazard level of interest. It can easily be extended to include a list of hazard levels 
to evaluate. Figure 22 shows an example of a system response function with confidence intervals derived from an 
event tree uncertainty analysis.  

 

Algorithm 6 – Event Tree Response Uncertainty Analysis 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝑛𝑛 ←  number of chance nodes 
𝑥𝑥 ←  hazard level to evaluate 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

Sample uniformly at random with replacement an integer seed 𝑠𝑠𝑖𝑖~U(0,2147483647) 
Create random number generator with seed 𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠𝑖𝑖) 

      𝑃𝑃(𝐹𝐹|𝑥𝑥)𝑖𝑖∗ ← 1 
for 𝑗𝑗 ← 1 to 𝑛𝑛 do 

Using 𝑟𝑟𝑟𝑟𝑟𝑟, sample uniformly at random with replacement a percentile 𝑟𝑟𝑗𝑗~U(0,1). 
if node 𝑗𝑗 is a reference node and dependent then percentile equals source percentile 
Generate node probability 𝑃𝑃𝑗𝑗∗ ←  𝐹𝐹−1�𝑟𝑟𝑗𝑗|𝜃𝜃� for node 𝑗𝑗 

             𝑃𝑃(𝐹𝐹|𝑥𝑥)𝑖𝑖∗ ←  𝑃𝑃(𝐹𝐹|𝑥𝑥)𝑖𝑖∗ ∙  𝑃𝑃𝑗𝑗∗ 
end for 

end for 
Estimate confidence intervals and mean probability for 𝑥𝑥 from {𝑃𝑃(𝐹𝐹|𝑥𝑥)1∗ ,⋯ ,𝑃𝑃(𝐹𝐹|𝑥𝑥)𝑅𝑅∗ }. 
 

0.4

0.6;

0.4;

0.3;
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Figure 22 - Example system response function with confidence intervals in RMC-TotalRisk. 

Diagnostics 
There are several diagnostic tools in RMC-TotalRisk for performing sensitivity analysis on an event tree. The 
diagnostic tools provide a better understanding of how each node in the event tree is impacting the overall SRP for a 
given hazard level. Most of the diagnostic tools are only applicable when uncertainty exists in the nodal probability 
estimates. For the sensitivity analysis, 1,000 Monte Carlo realizations are computed by default. For more detail on 
sensitivity analysis in RMC-TotalRisk, see Appendix G. Diagnostic tools include comparing node likelihoods, 
correlating sampled node probabilities to SRP, and sensitivity of sampled node probabilities to SRP. 

Event Likelihood 
RMC-TotalRisk reports the likelihood of each node in the event tree occurring given an initiating hazard level. 
Knowing the likelihood of each node event provides a fuller picture of the sequence of events that must happen for 
the end state to occur. The likelihood of any node event occurring is discussed above in Equation 38. A five number 
summary of event likelihood is calculated for every node in the event tree for all Monte Carlo realizations. The five 
number summary consists of the sampled Minimum, 25th %-ile, Median, 75th %-ile, and Maximum event likelihoods for 
a given hazard level. As shown in Figure 23, each node is ranked in decreasing order of median event likelihood.  
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Figure 23 - Example box and whisker plot showing the likelihood of each chance node occurring in the event tree for a given 
hazard level. 

 

Correlation 
Correlating sampled node probabilities to the overall SRP in a Monte Carlo simulation provides a measure of which 
nodes are most associated with the output SRP for a given hazard level. This diagnostic tool is only available if 
uncertainty exists in the event tree chance nodes.   

Pearson’s correlation coefficient is used for computing the correlation between the nodes and the overall SRP. The 
correlation coefficient will be high if the sampled node probabilities are highly associated with the SRPs, i.e., if an 
input and output tend to move together.  

The Pearson correlation coefficient is a value between −1 and 1. The sign of the coefficient indicates whether the 
association between the input and output is positive or negative. For a positive correlation, if the input value increases 
from the mean, the output value tends to also increase. For a negative correlation, if the input values increased from 
the mean, the output value tends to decrease. For example, chance nodes will have a positive correlation with the 
SRP, whereas remainder nodes will have a negative correlation. The size of the correlation coefficient indicates the 
strength of the association. Please see Appendix G for more details. 

As shown in Figure 24, each chance node is ranked from largest to smallest correlation coefficient. This type of plot is 
commonly referred to as a tornado plot.  
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Figure 24 – Example bar chart showing correlation coefficients of sampled node probabilities in the event tree to the overall SRP 
for a given hazard level. 

 

Sensitivity Index 
Another useful diagnostic is the sensitivity index. The sensitivity index is a measure of the contribution to the variance 
that a single input node has on the output SRP. The sensitivity index is a value between 0 and 1, where 0 indicates a 
0% contribution and 1 indicates a 100% contribution to variance. This diagnostic tool is only available if uncertainty 
exists in the event tree chance nodes.   

A high sensitivity index indicates that reducing the uncertainty in the node probability will have a large reduction in the 
uncertainty of the overall SRP. The sensitivity index provides a measure for identifying which nodes to focus on to 
reduce uncertainty in the SRP function. Please refer to Appendix G for more information on how the sensitivity index 
is computed.  

As shown in Figure 25, each node is ranked from largest to smallest sensitivity index. It can be seen from Figure 24 
and Figure 25, that both the correlation coefficient and sensitivity index will typically provide similar rankings of chance 
nodes.  DRAFT
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Figure 25 - Example bar chart showing sensitivity indices of nodes in the event tree to the SRP for a given hazard level. 

Composite 
A composite response function can be created by assigning weights (or likelihoods) to a list of response functions as 
follows: 

𝐹𝐹(𝑥𝑥) =  �𝜔𝜔𝑖𝑖 ∙ 𝐹𝐹𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥) Equation 43 

where 𝐹𝐹𝑖𝑖(∙) is the CDF for response function 𝑖𝑖; and 𝜔𝜔𝑖𝑖 is the weight or likelihood of hazard function 𝑖𝑖, with 0 ≤ 𝜔𝜔𝑖𝑖 ≤ 1 
and ∑ 𝜔𝜔𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 . This type of composite function is traditionally referred to as a mixture distribution [27]. 

Rather than using weights, a composite response function can alternatively be created by combining a list of response 
functions using the probability of union, assuming statistical independence between functions as follows: 

𝐹𝐹(𝑥𝑥) = 1 −�[1 − 𝐹𝐹𝑖𝑖(𝑥𝑥)]
𝑛𝑛

𝑖𝑖=1

 Equation 44 

where 𝐹𝐹(∙) is the CDF of the composite response function; and 𝐹𝐹𝑖𝑖(∙) is the CDF for response function 𝑖𝑖. Please see 
Appendix A for more details on the probability of union. Figure 26 shows an example of a composite response 
function for combining multiple failure modes for a levee.   
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Figure 26 - Example of a composite response function for combining multiple failure modes using the probability of union. 

 

The uncertainty analysis for the composite hazard functions is performed as described in Algorithm 6. This algorithm 
describes the routine given a single hazard level of interest. It can easily be extended to include a list of hazard levels 
to evaluate. When simulating risk with full uncertainty, a new composite response function is created each Monte 
Carlo realization, which is then used to derive probabilities of failure in the risk analysis.  

Algorithm 6 – Composite Response Function Uncertainty Analysis 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝑛𝑛 ←  number of response functions 
𝑥𝑥 ←  hazard level to evaluate 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

Sample uniformly at random with replacement a percentile 𝑟𝑟𝑖𝑖~U(0,1). 
if mixture then 𝑝𝑝𝑖𝑖∗ = 0 else 𝑝𝑝𝑖𝑖∗ = 1 
for 𝑗𝑗 ← 1 to 𝑛𝑛 do 

Sample a random response function 𝐹𝐹𝑗𝑗∗ given 𝑟𝑟𝑖𝑖 
if mixture then 𝑝𝑝𝑖𝑖∗ ←  𝑝𝑝𝑖𝑖∗ +  𝜔𝜔𝑗𝑗 ∙ 𝐹𝐹𝑗𝑗∗(𝑥𝑥|𝑟𝑟𝑖𝑖) else 𝑝𝑝𝑖𝑖∗ ←  𝑝𝑝𝑖𝑖∗ ∙ �1 − 𝐹𝐹𝑗𝑗∗(𝑥𝑥|𝑟𝑟𝑖𝑖)� 

end for 
if not mixture then 𝑝𝑝𝑖𝑖∗ ←  1 − 𝑝𝑝𝑖𝑖∗ 

end for 
Estimate confidence intervals and mean probability for 𝑥𝑥 from {𝑝𝑝1∗,⋯ ,𝑝𝑝𝑅𝑅∗ }. 
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Consequence Functions 
A consequence function describes the consequences of failure or non-failure for various hazard levels, such as water 
surface elevations. Consequence functions are also sometimes referred to as damage functions [7]. All consequence 
functions in RMC-TotalRisk are nonparametric. The following subsections describe the various consequence function 
options in RMC-TotalRisk.  

Tabular 
Consequence functions can be defined with a tabular (or nonparametric) relationship of hazard levels and 
consequences. The consequences are computed with linear interpolation: 

𝐶𝐶(𝑥𝑥)  = 𝑦𝑦𝑖𝑖 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖) �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

�  Equation 45 

where 𝑥𝑥 is an array of hazard values {𝑥𝑥} = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} for 𝑥𝑥𝑖𝑖 < 𝑥𝑥 < 𝑥𝑥𝑖𝑖+1; and 𝑦𝑦 is an array of consequence values 
{𝑦𝑦} = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}. The consequences values do not need to be in any strict order. A log-transform can be applied to 
both the 𝑥𝑥 and 𝑦𝑦 values to improve the accuracy of the interpolation.  

The consequence values can be deterministic or defined with uncertainty by selecting a distribution. An example 
tabular consequence function with uncertainty is shown in Figure 27. The parameters for the selected distribution 
must be entered for every ordinate in the tabular data.  

 

Figure 27 - Example of a tabular consequence function with uncertainty. 
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The uncertainty analysis for the tabular consequence functions is performed in the same manner as the other tabular 
functions in RMC-TotalRisk. When simulating risk with full uncertainty, a new tabular consequence function is created 
each Monte Carlo realization, which is then used to derive fail or non-fail consequences in the risk analysis.  

Incremental consequences are the incremental losses or damages that failure might inflict over and above any 
damage which would otherwise occur for the same hazard event assuming the structure does not fail. Incremental 
consequences for a failure mode are the difference between the consequences of failure and non-failure for the same 
hazard level: 

𝐶𝐶∆(𝑥𝑥) = 𝐶𝐶𝐹𝐹(𝑥𝑥) − 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥)  Equation 46 

where 𝐶𝐶∆(∙) are the incremental consequences; 𝐶𝐶𝐹𝐹(∙) are the consequences of failure; and 𝐶𝐶𝑁𝑁𝑁𝑁(∙) are the 
consequences of non-failure.  

In the Monte Carlo simulation, the consequence functions for fail and non-fail are sampled together as perfectly 
correlated within each failure mode. This is done to satisfy the definition that the consequences of failure and non-
failure are associated with the same hazard event. In addition, if for any reason, negative incremental consequences 
are calculated in the risk simulation, they are set to zero and a warning message is provided to the user. 

LifeSim 
A tabular consequence function can be generated using the results from the consequence estimation software, 
LifeSim. In this case, each ordinate of the tabular function has consequence estimates based on results from a 
LifeSim simulation. 
The RMC in association with HEC developed a modern implementation of LifeSim for the primary purpose of 
estimating life loss and economic damages from flood events. The key component of the LifeSim methodology is that 
the magnitude of life loss depends on whether people evacuate successfully and whether those who fail to evacuate 
can find adequate shelter [31]. LifeSim explicitly models the warning and evacuation of people during a flood and 
predicts the spatial distribution of fatalities within buildings and on roads. It uses an agent-based approach to track 
individuals throughout the warning and evacuation process. Although LifeSim was developed for dam and levee 
safety analyses, the software is not limited to breach flood hazards [32]. 

LifeSim employs Monte Carlo sampling techniques to capture uncertainty in various parameters that influence loss of 
life from flooding resulting in a distribution of potential outcomes as shown in Figure 28. Many model parameters can 
be defined with uncertainty, including but not limited to structure stability criteria, hazard identification time, hazard 
communication time, warning diffusion speed, protective action initiation timelines, and fatality rates for those that are 
inundated. Details on the methodologies applied in LifeSim can be found in the LifeSim Technical Reference Manual 
[33]. 

 
Figure 28 - Life loss results for all iterations from a LifeSim simulation. 
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Life loss and economic damage results from every simulation are imported from the specified LifeSim file. All 
iterations of the Monte Carlo analysis are included. Once imported, the results are stored in the RMC-TotalRisk study 
file. If the original LifeSim results are updated, they will have to be re-imported. Once imported, a tabular 
consequence function must be created using the LifeSim results. The user creates a tabular consequence function by 
entering hazard levels in ascending order and selecting the appropriate alternative and time of day for each hazard 
level as shown in Figure 29 below. 

Once a LifeSim simulation result has been selected for a given hazard level, multiple distributions are auto-fit to all 
iterations of the selected data. From the distribution options, by default a truncated normal distribution is selected to 
represent potential consequences with uncertainty at the specified hazard level. The user can change the distribution 
and its parameters at any time. The options for defining uncertainty around the LifeSim results and the method used 
to estimate parameters (see Appendix B – Summary Statistics) to auto-fit the distribution are defined below: 

• Deterministic: Method of Moments. 
 

• Triangular: Method of Moments. 
 

• Pert: Method of Percentiles. 
 

• Normal: Method of Moments. 
 

• Ln-Normal: Method of Moments. 
 

• Truncated Normal: Method of Moments. 

 

 
Figure 29 - Example of a tabular function created from LifeSim results. 
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Composite 
There is often a need to combine multiple consequence functions into a single composite function. A composite 
consequence function can be created by summing across a list of consequences functions as follows: 

𝐶𝐶(𝑥𝑥) =  �𝐶𝐶𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥)  Equation 47 

where 𝐶𝐶𝑖𝑖(∙) is the consequence function 𝑖𝑖 that computes consequences given a hazard level 𝑥𝑥. This option is 
particularly useful when damages are estimated separately by types. For example, there could be damages to 
properties, industry, agriculture, etc. A composite function can be created to aggregate the consequences from all 
types into a total consequence function.  

Alternatively, a composite consequence function can be created by assigning weights (or likelihoods) to a list of 
consequence functions: 

𝐶𝐶(𝑥𝑥) =  �𝜔𝜔𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥) Equation 48 

where 𝐶𝐶𝑖𝑖(∙) is the consequence function 𝑖𝑖 that computes consequences given a hazard level 𝑥𝑥; and 𝜔𝜔𝑖𝑖 is the weight or 
likelihood of consequence function 𝑖𝑖, with 0 ≤ 𝜔𝜔𝑖𝑖 ≤ 1 and ∑ 𝜔𝜔𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 .  

The user can choose to average the consequence functions based on the user-defined weights, or instead the 
uncertainty in consequence functions can be modeled as a mixture distribution based on user-defined weights. The 
mixture distribution approach captures the full uncertainty from all the consequence functions and will result in wider 
variance and confidence interval widths.  

In dam and levee safety, it is common practice to evaluate daytime and nighttime consequences separately, and then 
assigning a likelihood to each scenario. For example, daytime consequences are typically given a weight of 0.42 (10 
hours per day) and nighttime consequences are given a weight of 0.58 (14 hours per day). Figure 30 shows an 
example of a composite consequence curve for the weighted average of day and night scenarios.  

The uncertainty analysis for the composite consequence functions is performed as described in Algorithm 7. This 
algorithm describes the routine given a single hazard level of interest. It can easily be extended to include a list of 
hazard levels to evaluate. When simulating risk with full uncertainty, a new composite consequence function is 
created each Monte Carlo realization, which is then used to derive consequences of failure or non-failure in the risk 
analysis. DRAFT
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Figure 30 - Example of a composite consequence function using a weighted average for day and night losses. 

 

Algorithm 7 – Composite Consequence Function Uncertainty Analysis 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝑛𝑛 ←  number of consequence functions 
𝑥𝑥 ←  hazard level to evaluate 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

for 𝑗𝑗 ← 1 to 𝑛𝑛 do 
      Sample uniformly at random with replacement a percentile 𝑟𝑟𝑖𝑖~U(0,1). 

            Sample a random consequence function 𝐶𝐶𝑗𝑗∗ given 𝑟𝑟𝑖𝑖 
if additive then 
      𝑦𝑦𝑖𝑖∗ ←  𝑦𝑦𝑖𝑖∗ + 𝐶𝐶𝑗𝑗∗(𝑥𝑥|𝑟𝑟𝑖𝑖)                                                         ⊳ Sum the consequences from each function 
else if average then 

                  𝑦𝑦𝑖𝑖∗ ←  𝑦𝑦𝑖𝑖∗ + 𝜔𝜔𝑗𝑗 ∙ 𝐶𝐶𝑗𝑗∗(𝑥𝑥|𝑟𝑟𝑖𝑖)                                             ⊳ Average the consequences from each function 
else if mixture then 
     𝐹𝐹𝐶𝐶 ←  𝐹𝐹𝐶𝐶 + 𝜔𝜔𝑗𝑗                                                                     ⊳ Create a cumulative distribution across all functions 

 if 𝑟𝑟𝑗𝑗 ≤  𝐹𝐹𝐶𝐶 where 𝑟𝑟𝑗𝑗~U(0,1) then                               ⊳ Randomly sample to determine which function 
                    𝑦𝑦𝑖𝑖∗ ←  𝐶𝐶𝑗𝑗∗(𝑥𝑥|𝑟𝑟𝑖𝑖)                                
                    break 
              end if 

end if 
end for 

end for 
Estimate confidence intervals and mean consequences for 𝑥𝑥 from {𝑦𝑦1∗,⋯ ,𝑦𝑦𝑅𝑅∗}. 
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Quantitative Risk Analysis 
Risk has various definitions and interpretation among different industries, but it is generally understood to describe the 
probability and severity of an adverse event [2]. Risk can also be defined in terms of an expected value and deviations 
from the expected value. For example, in the financial industry, the standard deviation is a popular risk measure for 
stock returns [3]. Flood risk management investment decisions are typically made from a risk neutral perspective 
based on average annual net benefits [4]. As such, flood risk can be formally defined as the expected value of 
consequences 𝔼𝔼[𝐶𝐶], which is calculated as: 

𝔼𝔼[𝐶𝐶] =  � 𝐶𝐶(𝑥𝑥)
∞

−∞

∙ 𝑓𝑓�𝐶𝐶(𝑥𝑥)� ∙ 𝑑𝑑𝑑𝑑  Equation 49 

where 𝑥𝑥 is the hazard level (e.g., flood discharge or water level); 𝐶𝐶(𝑥𝑥) determines the consequences, such as 
property damage or life loss, for the hazard level 𝑥𝑥; and 𝑓𝑓�𝐶𝐶(𝑥𝑥)� is the probability density function (PDF) of the 
consequences occurring. The probability distribution of consequences can be defined as a function of hazard, system 
response, and consequence functions: 

𝔼𝔼[𝐶𝐶] =  � 𝑓𝑓𝑥𝑥(𝑥𝑥)
∞

−∞

∙ 𝐹𝐹𝑅𝑅(𝑥𝑥) ∙ 𝐶𝐶𝑅𝑅(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑  Equation 50 

where 𝑓𝑓𝑥𝑥(𝑥𝑥) is the probability density function of the hazard (e.g., annual maximum water level or ground 
acceleration), 𝐹𝐹𝑅𝑅(𝑥𝑥) is the system response function (i.e., probability of failure given hazard level 𝑥𝑥), and 𝐶𝐶𝑅𝑅(𝑥𝑥) is the 
consequences given the hazard level 𝑥𝑥 and the system response.  

In practice, the risk integral for a dam or levee is often calculated numerically by annualizing and discretizing the 
hazard. The risk of failure using discrete hazard levels follows from Equation 50 and is defined as: 

𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)
𝑖𝑖

∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖)  Equation 51 

where 𝑃𝑃(𝑥𝑥𝑖𝑖) is the probability of the hazard level 𝑥𝑥𝑖𝑖; 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) is the conditional probability of failure given the hazard 
level 𝑥𝑥𝑖𝑖.; and 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) is the consequence of failure given the hazard level 𝑥𝑥𝑖𝑖. Equation 51 is often written semantically 
to convey the risk equation as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) × 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  Equation 52 

where the risk of failure is equal to the probability of the hazard level, 𝑃𝑃(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), multiplied by the probability of 
failure given the hazard level, 𝑃𝑃(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), multiplied by the consequences of failure at the hazard 
level, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.   

R-S Reliability Formulation of Risk 
This section derives the necessary steps required to go from Equation 49 to Equation 51 using an engineering 
reliability formulation of risk. The following derivation is taken from [34]. 

Most engineering risk problems involve two opposing factors: a resistance (or capacity) 𝑅𝑅 at hazard level 𝑥𝑥, and the 
load (or demand) 𝑆𝑆 at hazard level 𝑥𝑥. When the load exceeds the resistance, failure occurs. The word “failure” does 
not necessarily imply fracture, breach, or collapse of the structure or system. The term here is used in the general 
sense, meaning that the system fails to meet the demand placed on it. The probability of failure and resulting risk 
arises due to the uncertainties in the load, resistance, and consequences.  
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When estimating the risk of failure, the probability of consequences occurring, 𝑓𝑓�𝐶𝐶(𝑥𝑥)�, in Equation 49 is assumed to 
be equivalent to the probability of failure, 𝑝𝑝𝐹𝐹, which is defined as the probability that the resistance is less than or 
equal to a specific load: 

𝑝𝑝𝐹𝐹 = 𝑃𝑃(𝑅𝑅 ≤ 𝑆𝑆)  Equation 53 

The complement of the probability of failure, 1 − 𝑝𝑝𝐹𝐹, is the reliability, or the probability of non-failure. The joint PDF of 
𝑅𝑅 and 𝑆𝑆 is defined as: 

𝑝𝑝𝐹𝐹 =  � � 𝑓𝑓𝑅𝑅𝑅𝑅(𝑟𝑟, 𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑 ∙ 𝑑𝑑𝑑𝑑
𝑟𝑟≤𝑠𝑠

  Equation 54 

In RMC-TotalRisk, this double integral is solved by conditioning on 𝑆𝑆. As such, the joint PDF 𝑓𝑓𝑅𝑅𝑅𝑅(𝑟𝑟, 𝑠𝑠) is replaced by its 
equivalent 𝑓𝑓𝑅𝑅|𝑆𝑆(𝑟𝑟|𝑠𝑠) ∙ 𝑓𝑓𝑆𝑆(𝑠𝑠), where 𝑓𝑓𝑅𝑅|𝑆𝑆(𝑟𝑟|𝑠𝑠) is the conditional PDF of 𝑅𝑅 given the demand 𝑆𝑆 = 𝑠𝑠, and 𝑓𝑓𝑆𝑆(𝑠𝑠) is the 
marginal PDF of 𝑆𝑆. The double integral in Equation 54 can then be rewritten as: 

𝑝𝑝𝐹𝐹 =  � �𝑓𝑓𝑅𝑅|𝑆𝑆(𝑟𝑟|𝑠𝑠) ∙ 𝑓𝑓𝑆𝑆(𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑 ∙ 𝑑𝑑𝑑𝑑
𝑠𝑠

−∞

∞

−∞

  Equation 55 

Replacing ∫ 𝑓𝑓𝑅𝑅|𝑆𝑆(𝑟𝑟|𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑𝑠𝑠
−∞  with the conditional CDF of 𝑅𝑅, the double integral reduces to: 

𝑝𝑝𝐹𝐹 =  � 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑠𝑠|𝑠𝑠) ∙ 𝑓𝑓𝑆𝑆(𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

  Equation 56 

which can be seen as an application of the total probability theorem (see Appendix A), where the failure event is 
conditioned on the demand 𝑆𝑆. As shown in Appendix A, the PDF is the derivative of the CDF: 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

  Equation 57 

Therefore, 𝑓𝑓𝑆𝑆(𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑 can be replaced by 𝑑𝑑𝑑𝑑𝑆𝑆(𝑠𝑠) so that Equation 56 further reduces to:  

𝑝𝑝𝐹𝐹 =  � 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑𝑆𝑆(𝑠𝑠)
∞

−∞

  Equation 58 

Now, replacing 𝑓𝑓�𝐶𝐶(𝑥𝑥)� in Equation 49 with 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑠𝑠) ∙ 𝑑𝑑𝑑𝑑𝑆𝑆(𝑠𝑠), and replace the demand 𝑠𝑠 by its equivalent hazard level 𝑥𝑥 
gives: 

𝔼𝔼[𝐶𝐶𝐹𝐹] = � 𝐶𝐶𝐹𝐹(𝑥𝑥) ∙ 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑𝑆𝑆(𝑥𝑥)
∞

−∞

  Equation 59 

Finally, by rearranging terms and solving Equation 59 with numerical integration as shown in Appendix D, the risk of 
failure becomes: 
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𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝑑𝑑𝑑𝑑𝑆𝑆(𝑥𝑥) ∙ 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑥𝑥) ∙ 𝐶𝐶𝐹𝐹(𝑥𝑥) ≈
𝑏𝑏

𝑎𝑎

�𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)
𝑖𝑖

∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖)  Equation 60 

Which can be seen as equivalent to Equation 51. 

All inputs in RMC-TotalRisk are modeled as continuous distributions and functions. However, to improve the 
readability of the risk equations, and since risk has traditionally been computed using numerical integration with 
discrete hazard bins, the discrete form of the risk equation shown in Equation 51 is used for the remainder of this 
chapter.  

Types of Risk 
RMC-TotalRisk estimates five different types of risk: 1) risk of failure; 2) risk of non-failure; 3) total risk; 4) incremental 
risk of failure; and 5) background risk of non-failure. These various types of risk are consistent with those presented in 
[7] [11] [35]. In the USACE Dam and Levee Safety Programs, incremental risk is referred to as dam risk or levee risk 
and total risk is referred to as flood risk. 

Each of these risk types have different uses in decision making. For example, incremental risk of failure for a given 
dam or levee is a primary metric for dam and levee safety decisions. Whereas total risk is used for evaluating the 
annual net benefits designing a new structure, such as a dam or levee. The following subsections provide the 
mathematical details for each type of risk computed by RMC-TotalRisk.  

Risk of Failure 
The risk of failure follows from is defined as: 

𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)
𝑖𝑖

∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖)  Equation 61 

where 𝑃𝑃(𝑥𝑥𝑖𝑖) is the probability of the hazard level 𝑥𝑥𝑖𝑖; 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) is the conditional probability of failure given the hazard 
level 𝑥𝑥𝑖𝑖; and 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) is the consequence of failure given the hazard level 𝑥𝑥𝑖𝑖. 

Risk of Non-Failure 
For infrastructure such as dams and levees, there will often be consequences even if the structure does not fail. For 
example, during a major flood event, a dam could activate the emergency spillway, preventing the dam from reducing 
downstream flooding. The risk of non-failure is defined as: 

𝔼𝔼[𝐶𝐶𝑁𝑁𝑁𝑁] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ {1 − 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)}
𝑖𝑖

∙ 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖)  Equation 62 

where {1 − 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)} is the probability of non-failure given the hazard level 𝑥𝑥𝑖𝑖, which is simply the complement of the 
probability of failure; and 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖) is the consequence of non-failure given the hazard level 𝑥𝑥𝑖𝑖. 

The risk of non-failure is important to consider when evaluating potential structural rehabilitation and modification 
measures for dams and levees. For example, to reduce the risk of dam failure from overtopping, the spillway could be 
widened or made more efficient, which could increase the risk of non-failure.  
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Total Risk 
The total risk is the sum of the risk of failure and non-failure and is defined as follows: 

𝔼𝔼[𝐶𝐶𝑇𝑇] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ [𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) ∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) +  {1 − 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)} ∙ 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖)]
𝑖𝑖

  Equation 63 

Total risk can also be computed by summing the risk of failure and risk of non-failure: 

𝔼𝔼[𝐶𝐶𝑇𝑇] =  𝔼𝔼[𝐶𝐶𝐹𝐹] + 𝔼𝔼[𝐶𝐶𝑁𝑁𝑁𝑁]  Equation 64 

In some USACE publications, total risk has been referred to as residual risk, i.e., the risk that remains [7] [11] [36]. 
The total risk is often used to evaluate risk reduction alternatives for new FRM structures and systems. In addition, 
risk reduction alternatives should do no harm by not increasing total risk [11]. For example, to reduce the risk of dam 
failure from overtopping, the spillway could be widened or made more efficient, which could increase the risk of non-
failure. The spillway alternative should not increase the risk of non-failure more than it reduces the risk of failure, i.e., 
the total risk should decrease and not increase.  

Incremental Risk 
A common practice when evaluating rehabilitation or modification of existing infrastructure for safety is to estimate risk 
using incremental consequences [11] [35] [37]. Incremental consequences are the incremental losses or damages 
that failure might inflict over and above any damage which might occur for the same event assuming the structure 
does not fail. In USACE safety programs, incremental risk is the primary risk measure used for decision making and 
portfolio prioritization because it represents the risk that can be reduced by modifications within existing authorizations 
from Congress. The incremental risk equation is: 

𝔼𝔼[𝐶𝐶∆] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)
𝑖𝑖

∙ 𝐶𝐶∆(𝑥𝑥𝑖𝑖)  Equation 65 

where 𝐶𝐶∆(𝑥𝑥𝑖𝑖) = 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖). Incremental risk is sometimes referred to as excess risk. In certain simulation 
scenarios, there is the possibility that the simulated consequences of non-failure are greater than consequences of 
failure, leading to negative incremental consequences. In RMC-TotalRisk, negative incremental consequences (and 
thus negative incremental risk) are not permitted, so negative incremental consequences are set to zero if they occur 
during a risk simulation. RMC-TotalRisk only accounts for consequences of failure over and above or in excess of 
consequences of non-failure.  

Background Risk 
Background risk is defined as the risk of the structure assuming that it has no structural flaws or vulnerabilities. In 
other words, if all the structural vulnerabilities were eliminated, the remaining risk would be the background risk from 
natural hazards. The background risk equation can be derived from the total risk equation: 

𝔼𝔼[𝐶𝐶𝐵𝐵] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ [𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) ∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) +  {1 − 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)} ∙ 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖)]
𝑖𝑖

  Equation 66 

Because there are assumed to be no structural vulnerabilities, the probability of failure is set equal to zero, 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) =
0, for all potential failure modes. This then leads to the following equation for background risk: 

𝔼𝔼[𝐶𝐶𝐵𝐵] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ [0 ∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) +  1 ∙ 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖)]
𝑖𝑖

  Equation 67 

which further reduces to: 
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𝔼𝔼[𝐶𝐶𝐵𝐵] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖)
𝑖𝑖

  Equation 68 

In some USACE publications, background risk has been referred to as non-breach risk [11]. To avoid confusion with 
the risk of non-failure, the term background risk is used in the RMC-TotalRisk software.  

Incremental risk and background risk are risk measures commonly used for prioritizing safety investment decisions. 
However, it is important to note that these risk types are not representative of real events that could occur at the 
structure being evaluated. Risk of failure, non-failure, and total risk represent the risks for actual events experienced 
by the people and property at risk.  

For a single system component, Total risk can also be computed by summing the incremental risk and background 
risk: 

𝔼𝔼[𝐶𝐶𝑇𝑇] =  𝔼𝔼[𝐶𝐶∆] + 𝔼𝔼[𝐶𝐶𝐵𝐵]  Equation 69 

In RMC-TotalRisk, a system can have multiple components, each with multiple failure modes where each component 
also has a separate non-failure mode. As such, there is a potential for some embedded correlation between 
incremental consequences and non-failure consequences across system components. Therefore, for a system with 
multiple components, depending on the selected joint consequence rule, total risk will be greater than or equal to 
incremental plus background risk. More details on system risk are provided in the next section.  

System Risk 
The previous section described the types of risk that can be evaluated for a single system component involving a 
single failure mode. This section will demonstrate how those risk types can be generalized for complex 
multicomponent systems.  

Most engineering risk and reliability problems involve complex systems composed of multiple components each with 
multiple failure modes. For example, a levee system might have several independent levee segments, each with 
several potential failure modes. Most physical engineering systems that are composed of multiple components can be 
classified as series-connected or parallel-connected systems, or combinations thereof [9] [38].  

In a series system, if any component fails, the entire system fails. In other words, a series system is a nonredundant 
system, also known as a “weakest link” system. Figure 31 provides a schematic of a series system, which resembles 
links in a chain; if one link fails, the whole chain fails. Many engineering systems are in series, such as highways, 
bridges, pipelines, levees, dams, etc.  

 

 

 

Figure 31 - Schematic of a series system. 

 

Parallel systems are redundant systems that only fail when all components in the system fail. Figure 32 provides a 
schematic of a parallel system. 
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Figure 32 - Schematic of a parallel system. 

 

Engineering systems may be composed of a combination of series-connected and parallel-connected components as 
shown in Figure 33. 

 

 
Figure 33 - Schematic of a combination system. 

 

The probability of failure of a series system is the union of all the failure states of the components: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃 ��𝐹𝐹𝑖𝑖|𝑥𝑥
𝑖𝑖

�  Equation 70 

where 𝐹𝐹𝑖𝑖|𝑥𝑥 is failure for failure mode 𝑖𝑖 given the hazard level 𝑥𝑥. The probability of failure of a parallel system is the 
intersection (or joint probability) of all the failure states: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃��𝐹𝐹𝑗𝑗|𝑥𝑥
𝑗𝑗

�  Equation 71 

The probability of failure for a combination system is: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃���𝐹𝐹𝑖𝑖,𝑗𝑗|𝑥𝑥
𝑗𝑗𝑖𝑖

�  Equation 72 

If all parallel-connected 𝑖𝑖 failures are independent, and all series-connected 𝑗𝑗 failures are mutually exclusive, the 
probability of failure is: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = ��𝑃𝑃�𝐹𝐹𝑖𝑖,𝑗𝑗|𝑥𝑥�
𝑖𝑖𝑗𝑗 

  Equation 73 

This sum-product formulation is the same as Equation 40, which is used to evaluate event trees.   
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In RMC-TotalRisk, multiple failure modes are treated as a series system, consistent with [9] and [39]. Parallel modes 
of failure can be modeled with event trees, as shown in System Response Functions chapter. The following 
subsections describe how multiple failure modes and multiple system components are incorporated into the RMC-
TotalRisk system risk analysis.  

Risk Diagram 
A risk analysis in RMC-TotalRisk is defined through a diagram as shown in Figure 34 below. The diagram provides an 
intuitive way to create and connect the various components of the modeled system. Figure 34 shows a single system 
component for a dam safety risk analysis. There is a non-failure mode, shown at the top of the diagram with the 
purple line, that connects the hazard function to the non-failure consequences, without any system response. For 
many dams, there will often be consequences even if the structure does not fail. For example, during a major flood 
event, a dam could activate the emergency spillway, preventing the dam from reducing downstream flooding. The 
non-failure mode is used to model the risk of non-failure. There are two failure modes: 1) A spillway erosion failure 
mode, labelled PFM 1, shown in the center of the diagram connects the hazard function at Dam A to the PFM 1 
response function and consequence function; and 2) A concentrated leak erosion failure mode, labelled PFM 2, 
shown in the bottom of the diagram with the same respective connections. 

 
Figure 34 – RMC-TotalRisk risk diagram. 

 

In the risk diagram, the input functions are connected from left to right, and linked together based on the hazard type 
(e.g., stage, flow, etc.) and units (e.g., ft, cfs, etc.) of each function. There cannot be any circular or redundant 
connections. As such, the risk diagram is a type of directed acyclic graph (DAG).  

The system components are identified and labeled by the selected hazard function. The failure modes within a 
component are identified and labeled by the selected response functions. RMC-TotalRisk permits an unlimited 
number of failure modes per component, depending on the selected failure mode method. However, a single system 
is limited to 20 components due to virtual memory and computer runtime limitations. For example, the system risk of a 
watershed comprising up to 20 dams, each with 20 failure modes, can be assessed. More details on these constraints 
are provided in the following subsections.   
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Multiple Failure Modes 
A failure mode for a system component is defined as some unique combination of events whose joint occurrence 
would cause the system to fail [39]. The conditional probability of failure given a hazardous event, 𝑃𝑃(𝐹𝐹|𝑥𝑥), is often a 
function of multiple failure modes, some of which could have a positive dependency and others could have a negative 
dependency. For example, internal erosion driven failure modes for a dam or levee typically have a positive 
dependency [39]. In other words, the dam or levee can be in the process of failure from multiple internal erosion 
failure modes simultaneously. On the other hand, if the dam or levee is failing from overtopping, it may be less likely, 
or not even possible, that it will also fail from internal erosion failure modes.  

In RMC-TotalRisk, multiple failure modes are modeled as a system in series because any one of them will cause 
failure of the system component [39]. For this reason, the overall conditional probability of failure 𝑃𝑃(𝐹𝐹|𝑥𝑥) must be 
computed using the probability of union (see Appendix A). For example, if there are two failure modes, the probability 
of union is: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃 ��𝐹𝐹𝑖𝑖|𝑥𝑥
𝑖𝑖

�  Equation 74 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃(𝐹𝐹1|𝑥𝑥) + 𝑃𝑃(𝐹𝐹2|𝑥𝑥) − 𝑃𝑃(𝐹𝐹1|𝑥𝑥 ∩ 𝐹𝐹2|𝑥𝑥)   Equation 75 

where 𝑃𝑃(𝐹𝐹1|𝑥𝑥) is the conditional probability of failure for failure mode 1; 𝑃𝑃(𝐹𝐹2|𝑥𝑥) is the conditional probability of failure 
for failure mode 2; and 𝑃𝑃(𝐹𝐹1|𝑥𝑥 ∩ 𝐹𝐹2|𝑥𝑥) is the joint probability of failure mode 1 and 2 both occurring at the same hazard 
level. 

In practice, there is rarely enough data to precisely estimate the dependence between failure modes. Instead, the 
probability of union between failure modes can be bounded following the Unimodal Bounds Theorem [9] [38] [39]. 
These bounds are sometimes referred to as Fréchet inequalities or risk bounds [40]. For positively dependent failure 
modes, the true conditional probability of failure 𝑃𝑃(𝐹𝐹|𝑥𝑥) will be within the range: 

max
𝑖𝑖

{𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)} ≤ 𝑃𝑃(𝐹𝐹|𝑥𝑥) ≤ 1 −�[1 − 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)]
𝑘𝑘

𝑖𝑖=1

   Equation 76 

If the failure modes are perfectly positively dependent, the true probability of failure will equal the most probable 
failure mode, max

𝑖𝑖
{𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)}. On the other hand, if the failure modes are statistically independent, the true probability of 

failure will equal the probability of union following De Morgan’s rule and the rule of subtraction for 𝑘𝑘 failure modes. If 
the failure modes are negatively dependent, the true probability of failure will be within the range: 

1 −�[1 − 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)]
𝑘𝑘

𝑖𝑖=1

≤ 𝑃𝑃(𝐹𝐹|𝑥𝑥) ≤ min�1,�𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)
𝑘𝑘

𝑖𝑖=1

�   Equation 77 

where ∑ 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)𝑘𝑘
𝑖𝑖=1  is the probability of union for mutually exclusive failure modes. In practice, independence is 

assumed for positively dependent failure modes to err on the side of caution. Likewise, perfect negative dependency 
is assumed for negatively dependent failure modes.  

The unimodal bounds provided in Equation 76 and Equation 77 are sometimes too wide for use in quantitative risk 
analysis. In addition, these bounds are only of practical use if each failure mode has the same consequence function 
[41]. Consequences of failure can vary widely depending on the failure mechanism. The unimodal bound approach 
combines the probability of failure for each mode up front before evaluating the consequences for each failure mode. 
However, in most quantitative risk analyses, it is often desirable to keep track of the consequences for each individual 
failure mode so that risk reduction alternatives can be evaluated.   

When each failure mode has different levels of consequences, more robust techniques must be used. RMC-TotalRisk 
provides three computation methods for assessing multiple failure modes: 1) the common cause adjustment, 2) 
competing failure modes, and 3) joint failure modes. 
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Common Cause Adjustment 
The Common Cause Adjustment (CCA) is a method that was first applied to dam safety risk analyses [42] [41]. The 
method was originally intended for failure modes that are not mutually exclusive and that can occur simultaneously at 
multiple sections of a dam due to a single or common cause initiating event [42]. The failure modes are assumed to 
be positively correlated and conditioned on the same loading event; hence they have a common cause. The upper 
unimodal bound for positively correlated failure modes is De Morgan’s rule. However, that equation does not provide a 
direct method for computing the risk of failure when each failure mode has unique consequences. To improve upon 
the unimodal bounds, the CCA method reapportions the conditional probabilities of failure of each failure mode such 
that each can be modelled as being mutually exclusive. First, the probability of union assuming independence (De 
Morgan’s rule) is set equal to the probability of union assuming mutual exclusivity by multiplying by a constant 𝑐𝑐: 

1 −�[1 − 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)]
𝑘𝑘

𝑖𝑖=1

=  𝑐𝑐 ∙  �𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)
𝑘𝑘

𝑖𝑖=1

  Equation 78 

Rearranging, the constant (or adjustment factor) is calculated as: 

𝑐𝑐 =  
1 −∏ [1 − 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)]𝑘𝑘

𝑖𝑖=1
∑ 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)𝑘𝑘
𝑖𝑖=1

   Equation 79 

where 0 ≤ 𝑐𝑐 ≤ 1. Now, to compute the combined probability of failure each marginal conditional probability is 
multiplied by the constant: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) =  �𝑐𝑐 ∙ 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)
𝑘𝑘

𝑖𝑖=1

   Equation 80 

Then, the risk of failure with 𝑘𝑘 potential failure modes is as follows: 

𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙�𝑐𝑐 ∙
𝑘𝑘

𝑗𝑗=1

𝑃𝑃�𝐹𝐹𝑗𝑗|𝑥𝑥𝑖𝑖�
𝑖𝑖

∙ 𝐶𝐶𝐹𝐹𝑗𝑗(𝑥𝑥𝑖𝑖)  Equation 81 

As an illustrative example, consider three failure modes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 with probabilities of failure 0.25, 0.35, and 0.50, 
respectively. A Venn diagram of these failure modes is shown in Figure 35 below. These failure modes are not 
mutually exclusive and therefore overlap in the diagram.  

The probability of union assuming independence is: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) =  1 −  [1 − 𝑃𝑃(𝐴𝐴)] ∙ [1 − 𝑃𝑃(𝐵𝐵)] ∙ [1 − 𝑃𝑃(𝐶𝐶)]   Equation 82 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) =  1 −  [1 − 0.25] ∙ [1 − 0.35] ∙ [1 − 0.50] = 0.75625   Equation 83 

The probability of union assuming mutual exclusivity is: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) =  𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) + 𝑃𝑃(𝐶𝐶)   Equation 84 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) = 0.25 + 0.35 + 0.50 = 1.10   Equation 85 

 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
53 

 

 
Figure 35 - Venn diagram for the union of three failure modes. 

 

The CCA adjustment factor is: 

𝑐𝑐 =  
0.75625

1.10
= 0.6875  Equation 86 

Then the adjusted conditional probabilities are calculated as: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) =  𝑐𝑐 ∙ 𝑃𝑃(𝐴𝐴) + 𝑐𝑐 ∙ 𝑃𝑃(𝐵𝐵) + 𝑐𝑐 ∙ 𝑃𝑃(𝐶𝐶)   Equation 87 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) = 0.171875 + 0.240625 + 0.343750 = 0.75625   Equation 88 

These adjusted conditional probabilities of failure are visualized in Figure 36. The probabilities are reduced 
proportionally so that they no longer intersect, while still summing to the same probability of union.  

 
Figure 36 - Venn diagram for the union of three failure modes after applying the Common Cause Adjustment. 
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The CCA was originally intended for positively correlated or independent failure modes. However, there are situations 
where failure modes can be negatively dependent, which will lead to a higher combined probability of failure for the 
system [39] [43]. RMC-TotalRisk employs a generalized version of the CCA that can work with any dependency. The 
generalized adjustment constant is: 

𝑐𝑐 =  
𝑃𝑃(⋃ 𝐹𝐹𝑖𝑖|𝑥𝑥𝑛𝑛

𝑖𝑖=1 )
∑ 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)𝑛𝑛
𝑖𝑖=1

   Equation 89 

The probability of union in the numerator is calculated using the inclusion-exclusion principle as discussed in the Joint 
Failure Modes section and in Appendix A.  

The CCA is the default failure mode method in RMC-TotalRisk. This method is flexible, it can incorporate 
dependencies between failure modes, it allows for an unlimited number of failure modes, and it is very 
computationally efficient. Although, it is important to note that the CCA method does not have a strong theoretical 
basis.  

The key assumption of the CCA method is that failure modes are not mutually exclusive, but instead dependent and 
likely to occur simultaneously. However, rather than explicitly accounting for the joint occurrence of failures, the CCA 
method reapportions the conditional probabilities of failure such that each failure mode can be treated as mutually 
exclusive at the point of first failure. This eliminates the possibility of joint failures and the possibility for joint 
consequences of failure.  

Because there is not a strong theoretical basis, the CCA method has the potential to lead to undesirable behavior and 
unrealistic failure probabilities for individual failure modes. For example, there are two special cases that can arise: 
physical dominance and freezing [42] [41] [44]. An example of dominance is where one failure mode develops more 
rapidly at a lower hazard level than the others, making the others less likely. For example, a dam could breach due to 
internal erosion at a normal pool elevation, which reduces the reservoir level, and thereby reduces the chance of 
simultaneous failures from other failure modes. Freezing refers to an approach where the CCA adjusted probabilities 
of failure are held constant for all hazard levels above the first hazard level for which at least one unadjusted failure 
probability becomes 1.0 [44]. Both dominance and freezing can be more formally addressed using the competing 
failure modes method described in the next section.  

Competing Failure Modes 
A competing failure analysis represents a combination of two or more failure modes that are “competing” to the end of 
life of a series system. The following three key assumptions are required for competing failure mode analysis: 

1. Each failure mode proceeds independently of every other one until failure occurs. At the point of first failure, 
each failure mode is mutually exclusive from one another; i.e., there cannot be joint failures.  
 

2. The system component fails when the first from all the competing failure modes reaches a failure state. The 
first failure precludes the other failure modes from occurring. 
 

3. Each of the 𝑘𝑘 failure modes has a known failure distribution, 𝐹𝐹(∙), which is monotonically increasing with 
increasing hazard levels.  

The competing failure mode approach can be thought of as a race to see which failure mode will fail first. The failure 
modes have no interaction or awareness of the state of the other failure modes and are unaware if one has already 
initiated or not. Each failure mode progresses independently from the others until the first failure causes the system 
component to fail. With this approach, two or more failure modes can never reach a failure state simultaneously, i.e., 
there can be no ties in the race, there must always be a single winner. 

In public health research, diseases and illnesses are treated as competing risks, where each illness is competing to 
end the life of the patient. For example, a patient can die from breast cancer or from a stroke but cannot die from both.  

In the context of dam and levee safety, an internal erosion failure mode can be thought of as competing with an 
overtopping failure mode. A levee can only fail from either internal erosion or overtopping, not both. Since these 
failure modes are competing, a levee failure prior to overtopping due to internal erosion can significantly reduce the 
probability of failure and consequences of an overtopping failure mode if the prior to overtopping failure fills the leveed 
area before overtopping occurs. 
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The formula for a competing risk model is typically written in terms of the survival function, 𝑆𝑆(∙). The survival function 
for a single failure mode 𝑖𝑖 is the complement of the CDF: 

𝑆𝑆𝑖𝑖(𝑥𝑥) = 1 − 𝐹𝐹𝑖𝑖(𝑥𝑥) = 1 − 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)  Equation 90 

Assuming statistical independence between failure modes, the survival function for the system component is: 

𝑆𝑆𝑐𝑐(𝑥𝑥) = �𝑆𝑆𝑖𝑖(𝑥𝑥)
𝑘𝑘

𝑖𝑖=1

  Equation 91 

The CDF of the failure distribution for the system component follows from the union of each failure mode: 

𝐹𝐹𝑐𝑐(𝑥𝑥) = 1 − 𝑆𝑆𝑐𝑐(𝑥𝑥) = 1 −�[1 − 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑥𝑥)]
𝑘𝑘

𝑖𝑖=1

   Equation 92 

The cumulative incidence function (CIF) is the cumulative probability of failure from a specific failure mode. In the 
literature, the CIF is also referred to as the sub-distribution function because it is not a true probability distribution. The 
CIF for a single failure mode is computed as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖(𝑥𝑥) = �ℎ𝑖𝑖(𝑡𝑡) ∙ 𝑆𝑆𝑐𝑐(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑
𝑥𝑥

−∞

  Equation 93 

where ℎ𝑖𝑖(∙) is the hazard function for failure mode 𝑖𝑖: 

ℎ𝑖𝑖(𝑥𝑥) =
𝑓𝑓𝑖𝑖(𝑥𝑥)

1 − 𝐹𝐹𝑖𝑖(𝑥𝑥) =
𝑓𝑓𝑖𝑖(𝑥𝑥)
𝑆𝑆𝑖𝑖(𝑥𝑥)  Equation 94 

The CDF of the failure distribution for the system component can also be computed by summing the CIFs: 

𝐹𝐹𝑐𝑐(𝑥𝑥) = � �ℎ𝑖𝑖(𝑡𝑡) ∙ 𝑆𝑆𝑐𝑐(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑
𝑥𝑥

−∞

𝑘𝑘

𝑖𝑖=1

  Equation 95 

𝐹𝐹𝑐𝑐(𝑥𝑥) = �𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖(𝑥𝑥)
𝑘𝑘

𝑖𝑖=1

 
 Equation 96 

In RMC-TotalRisk, Equation 93 is pre-processed for each failure mode with numerical integration using 𝑛𝑛 = 200 
partitioned hazard levels as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖(𝑥𝑥) = �
�𝑃𝑃�𝐹𝐹𝑖𝑖|𝑥𝑥𝑗𝑗� − 𝑃𝑃�𝐹𝐹𝑖𝑖|𝑥𝑥𝑗𝑗−1��

𝑆𝑆𝚤𝚤(𝑥𝑥)�������

𝑛𝑛

𝑗𝑗=2

∙ 𝑆𝑆𝑐𝑐(𝑥𝑥)�������  Equation 97 

where 𝑆𝑆(∙)����� is the mean survival function evaluated for the hazard level 𝑥𝑥. This is done as a pre-processing step before 
the adaptive integration routine used to solve the overall risk integral. Please see Appendix D for more details on 
numerical integration.  
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In RMC-TotalRisk, the competing failure mode method allows for an unlimited number of failure modes, and it is very 
computationally efficient. The competing failure mode method is similar to the CCA method. Each failure mode is 
treated as statistically independent from one another until the point of first failure, at which point the failure modes are 
treated as mutually exclusive. Although, the competing failure mode approach, which is typically referred to as 
competing risks, has a stronger theoretical basis in statistics and risk analysis. 

As mentioned before, the competing failure mode method can properly account for physical dominance and freezing. 
The failure probability for a single failure mode is adjusted to account for the survival probabilities of the other failure 
modes (Equation 93). Therefore, the CIF inherently accounts for dominance at lower hazard levels. In addition, the 
CIF behaves like a proper CDF where the nonexceedance probability is monotonically increasing with increasing 
hazard levels, and the sum of the CIFs will never exceed 1.0. As such, there is no need for freezing adjustment with 
this method.   

However, the superior theoretical approach of the competing failures method requires more rigid input assumptions: 
All potential failure modes are treated as statistically independent, and each system response function must be 
monotonically increasing with increasing hazard levels.  

Joint Failure Modes 
Unlike the previous two methods, the joint failure modes method directly allows for dependency between failure 
modes and allows for multiple (joint) failures during the same hazard event. The only assumption required for this 
analysis is that a rule must be applied to account for the consequences of a joint failure.   

Returning to the previous example, consider three failure modes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 with probabilities of failure 0.25, 0.35, 
and 0.50, respectively. Because these failure modes are not mutually exclusive and sum to greater than 1, an event 
tree can be constructed to show all possible failure and non-failure pathways, as shown in Figure 37 below.   

 
Figure 37 – Event tree diagram for three failure modes showing all possible pathways. 
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When there are multiple failure modes, the number of possible ways the system can fail is 2𝑛𝑛 − 1. For example, as 
seen in Figure 37, if there are 3 failure modes, there are 23 − 1 = 7 pathways that result in system failure, and one 
pathway to non-failure. As the number of failure modes and system components increase, the number of ways the 
system can fail increases exponentially (see Appendix A for more details). Considering this, in RMC-TotalRisk, if the 
joint failure mode option is selected, the maximum number of failure modes allowable for a single system component 
is 20.  

The event tree in Figure 37 can also be decomposed into a table as shown in Table 5 below. The first column 
provides a binary indicator for each unique failure combination. The second column shows the corresponding 
symbolic representation of each unique pathway in the tree. The third column shows the pathway probability 
assuming the failure modes are statistically independent. If the indicator in the first column is 1, then multiply by the 
respective marginal probability. If the indicator is 0 then multiply by the complement of the marginal probability.  

Table 5 - Table for three failure modes showing all possible pathways and joint probabilities. 

Combinations Pathways Pathway Probability 
1 0 0  𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵� ∩ 𝐶̅𝐶) = 0.25 ∙ (1 − 0.35) ∙ (1 − 0.50) = 0.08125 

0 1 0 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵 ∩ 𝐶̅𝐶) = (1 − 0.25) ∙ 0.35 ∙ (1 − 0.50) = 0.13125 
0 0 1 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵� ∩ 𝐶𝐶) = (1 − 0.25) ∙ (1 − 0.35) ∙ 0.50 = 0.24375 
1 1 0 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶̅𝐶) = 0.25 ∙ 0.35 ∙ (1 − 0.50) = 0.04375 
1 0 1 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵� ∩ 𝐶𝐶) = 0.25 ∙ (1 − 0.35) ∙ 0.50 = 0.08125 
0 1 1 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = (1 − 0.25) ∙ 0.35 ∙ 0.50 = 0.13125 
1 1 1 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = 0.25 ∙ 0.35 ∙ 0.50 = 0.04375 
0 0 0  𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵� ∩ 𝐶̅𝐶) = (1 − 0.25) ∙ (1 − 0.35) ∙ (1 − 0.50) = 0.24375 

 

If the failure modes have dependency, computing the pathway probabilities is not as simple as the method provided 
above in Table 5. To correctly account for dependency, RMC-TotalRisk uses the inclusion-exclusion principle (see 
Appendix A), which generalizes the formula for computing the probability of union for many events with dependency 
as follows: 

𝑃𝑃(𝐹𝐹|𝑥𝑥) = 𝑃𝑃 ��𝐹𝐹𝑖𝑖|𝑥𝑥
𝑛𝑛

𝑖𝑖=1

� = �(−1)𝑘𝑘+1
𝑛𝑛

𝑘𝑘=1

∙ � � 𝑃𝑃�𝐹𝐹𝑖𝑖1|𝑥𝑥 ∩ ⋯∩ 𝐹𝐹𝑖𝑖𝑘𝑘|𝑥𝑥�
1≤𝑖𝑖1<⋯<𝑖𝑖𝑘𝑘≤𝑛𝑛

�  Equation 98 

 

This equation can be more clearly understood by visualizing the case of three events 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 with a Venn diagram 
as shown in Figure 38. The probability union for the three events following the inclusion-exclusion principle is given 
by: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) =  𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) + 𝑃𝑃(𝐶𝐶)  − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐶𝐶) − 𝑃𝑃(𝐵𝐵 ∩ 𝐶𝐶) + 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)    Equation 99 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) =  0.25 + 0.35 + 0.50 − (0.25 ∙ 0.35) − (0.25 ∙ 0.50) − (0.35 ∙ 0.50)
+ (0.25 ∙ 0.35 ∙ 0.50)  = 0.75625 

 Equation 100 

This answer is the same as the probability of union using De Morgan’s rule and shown above in Equation 88. 
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Figure 38 - Venn diagram for the union of three events. 

 

The inclusion-exclusion principle can be generalized into the following recursive steps: 

1. Include the marginal probability of each event, 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) + 𝑃𝑃(𝐶𝐶) 
 

2. Exclude the pairwise joint probability, −𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐶𝐶) − 𝑃𝑃(𝐵𝐵 ∩ 𝐶𝐶) 
 

3. Include the triple-wise joint probability, +𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)   
 

4. Continue until the 𝑛𝑛-tuple-wise joint probability is included (if 𝑛𝑛 is odd) or excluded (if 𝑛𝑛 is even) 

This formula calculates the total probability of union with consideration of dependency. However, this formula does not 
provide the individual pathway probabilities. To get the correct pathway probabilities, the inclusion-exclusion method 
must be reversed as follows: 

1. Compute the triple-wise joint probability, 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)   
 

2. Compute each pairwise joint probability and exclude the triple-wise joint probability, e.g.,  𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶̅𝐶) =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) −  𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) 
 

3. Compute each marginal probability, exclude the associated pairwise joint probabilities, and include the triple-
wise joint probability, e.g., 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵� ∩ 𝐶̅𝐶) = 𝑃𝑃(𝐴𝐴) − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐶𝐶)  +  𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) 

The first column in Table 6 below shows the marginal, pairwise, and triple-wise combinations. The second column 
provides the probability of each event assuming independence. The probability of each pathway can be computed by 
reversing the inclusion-exclusion principle as shown in the fourth column. These results are identical to the results 
shown in Table 5. The key advantage of this approach is that dependencies between failure modes can be directly 
accounted for using the Multivariate Normal distribution as described in Appendix F.  
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Table 6 - Table for three failure modes showing all possible pathways and joint probabilities using the inclusion-exclusion principle. 

Marginal Events Probability Pathways Pathway Probability 
𝑷𝑷(𝑨𝑨) = 0.25 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵� ∩ 𝐶̅𝐶) = 0.25 − 0.0875 − 0.1250 + 0.04375 = 0.08125 
𝑷𝑷(𝑩𝑩) = 0.35 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵 ∩ 𝐶̅𝐶) = 0.35 − 0.0875 − 0.1750 + 0.04375 = 0.13125 
𝑷𝑷(𝑪𝑪) = 0.50 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵� ∩ 𝐶𝐶) = 0.50 − 0.1250 − 0.1750 + 0.04375 = 0.24375 

𝑷𝑷(𝑨𝑨 ∩ 𝑩𝑩) = 0.25 ∙ 0.35 = 0.0875 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶̅𝐶) = 0.0875 − 0.04375 = 0.04375 
𝑷𝑷(𝑨𝑨 ∩ 𝑪𝑪) = 0.25 ∙ 0.50 = 0.1250 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵� ∩ 𝐶𝐶) = 0.1250 − 0.04375 = 0.08125 
𝑷𝑷(𝑩𝑩 ∩ 𝑪𝑪) = 0.35 ∙ 0.50 = 0.1750 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = 0.1750 − 0.04375 = 0.13125 

𝑷𝑷(𝑨𝑨 ∩ 𝑩𝑩 ∩ 𝑪𝑪) = 0.25 ∙ 0.35 ∙ 0.50 = 0.04375 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = 0.25 ∙ 0.35 ∙ 0.50 = 0.04375 
𝑷𝑷(𝑨𝑨 ∪ 𝑩𝑩 ∪ 𝑪𝑪) = 0.75625 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵� ∩ 𝐶̅𝐶) = 1 − 0.75625 = 0.24375 

 

A rule must be assumed to account for the joint consequences of failure. RMC-TotalRisk includes four joint 
consequence options: 

• Additive: the consequences for joint failures are calculated as the sum of the consequences for each failure 
mode that occurs  
 

• Average: the consequences for joint failures are calculated as the average of the consequences for each 
failure mode that occurs. 
 

• Maximum: the consequences for joint failures are calculated as the maximum of the consequences over the 
failure modes that occurs. 
 

• Minimum: the consequences for joint failures are calculated as the minimum of the consequences over the 
failure modes that occur. 

In the context of dam and levee safety, additive consequences can be useful when each failure mode has a different 
inundation area where the consequences for the joint failure are best represented by adding the consequences for 
each inundation area. Average consequences can be used if the inundation areas are partially overlapping. If each 
failure mode has practically the same inundation area, then the maximum rule can be used so that consequences are 
not overestimated. The minimum rule can be used as a sensitivity or as a lower bound for risk.  

Following the previous example, failure mode 𝐴𝐴 will result in 10 lives lost, failure mode 𝐵𝐵 in 3 lives lost, and failure 
mode 𝐶𝐶 in 2 lives lost. Using the additive consequence rule, the expected consequences of failure are computed as 
shown in Table 7. 

Table 7 - Table for three failure modes showing all possible pathways and the expected consequences of failure. 

Combinations Pathways Pathway Probability Consequences Expected  
1 0 0  𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵� ∩ 𝐶̅𝐶) 0.08125 = 10 = 0.08125 ∙ 10 = 0.81250 

0 1 0 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵 ∩ 𝐶̅𝐶) 0.13125 = 3 = 0.13125 ∙ 3 = 0.39375 

0 0 1 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵� ∩ 𝐶𝐶) 0.24375 = 2 = 0.24375 ∙ 2 = 0.48750 

1 1 0 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶̅𝐶) 0.04375 = 10 + 3 = 13 = 0.04375 ∙ 13 = 0.56875 

1 0 1 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵� ∩ 𝐶𝐶) 0.08125 = 10 + 2 = 12 = 0.08125 ∙ 12 = 0.97500 

0 1 1 𝑃𝑃(𝐴̅𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) 0.13125 = 3 + 2 = 5 = 0.13125 ∙ 5 = 0.65625 

1 1 1 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) 0.04375 = 10 + 3 + 2 = 15 = 0.04375 ∙ 15 = 065625 

 
   

� = 4.55 
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The joint failure mode method can model dependency between failure modes and account for the combined 
consequences of joint failures within the system component. As such, this method is the most robust and accurate of 
the options for system components where joint failures can occur. For example, with many dams there is a possibility 
that multiple gates can fail during the same flood event, leading increased discharge and flood inundation. While the 
joint failure mode option is robust, it is also the most computationally intensive of the three options. In RMC-TotalRisk, 
due to runtime and virtual memory limitations, if the joint failure mode option is selected, the maximum number of 
failure modes allowable for a single system component is 20. The user should expect noticeably slower runtimes 
when the number of failure modes exceeds 10.  

Multiple System Components 
RMC-TotalRisk can perform risk analysis for a single system component, such as a dam or levee, or a complex 
system with multiple components, where each component can have multiple failure modes. For illustration, a risk 
analysis in RMC-TotalRisk with two separate dams each with two failure modes is shown in Figure 39 below.  
Computing risk for multiple system components requires a multidimensional integral. Consider a system with two 
components, where the consequences of failure from each component are additive. Following the general risk formula 
provided in Equation 49, the system risk becomes a two-dimensional integral: 

𝔼𝔼[𝐶𝐶]Ω =  � �{𝐶𝐶𝑋𝑋(𝑥𝑥) + 𝐶𝐶𝑌𝑌(𝑦𝑦)} ∙ 𝑓𝑓𝑋𝑋𝑌𝑌�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� ∙ 𝑑𝑑𝑑𝑑 ∙ 𝑑𝑑𝑑𝑑
∞

−∞

∞

−∞

  Equation 101 

where 𝑥𝑥 is the hazard level for system component 𝑋𝑋; 𝐶𝐶𝑋𝑋(𝑥𝑥) determines the consequences for the hazard level 𝑥𝑥; 𝑦𝑦 is 
the hazard level for system component 𝑌𝑌; 𝐶𝐶𝑌𝑌(𝑦𝑦) determines the consequences for the hazard level 𝑦𝑦; and 
𝑓𝑓𝑋𝑋𝑋𝑋�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� is the joint PDF of the combined system consequences occurring.  

Rewriting this as the discrete form of the risk equation shown in Equation 51, the system risk of failure becomes: 

𝔼𝔼[𝐶𝐶𝐹𝐹]Ω = ��𝑃𝑃𝑋𝑋𝑋𝑋 �𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗� ∙ �𝑃𝑃(𝐹𝐹𝑋𝑋|𝑥𝑥𝑖𝑖) ∙ 𝐶𝐶𝐹𝐹𝑋𝑋(𝑥𝑥𝑖𝑖) + 𝑃𝑃 �𝐹𝐹𝑌𝑌|𝑦𝑦𝑗𝑗� ∙ 𝐶𝐶𝐹𝐹𝑌𝑌 �𝑦𝑦𝑗𝑗��
𝑗𝑗𝑖𝑖

  Equation 102 

where 𝑃𝑃𝑋𝑋𝑋𝑋�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� is the joint probability of the hazard level 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑗𝑗; 𝑃𝑃(𝐹𝐹𝑋𝑋|𝑥𝑥𝑖𝑖) is the combined conditional probability of 
failure for system component 𝑋𝑋 given the hazard level 𝑥𝑥𝑖𝑖;  𝐶𝐶𝐹𝐹𝑋𝑋(𝑥𝑥𝑖𝑖) is the consequence of failure for system component 
𝑋𝑋 given the hazard level 𝑥𝑥𝑖𝑖; 𝑃𝑃�𝐹𝐹𝑌𝑌|𝑦𝑦𝑗𝑗� is the combined conditional probability of failure for system component 𝑌𝑌 given 
the hazard level 𝑦𝑦𝑗𝑗; and  𝐶𝐶𝐹𝐹𝑌𝑌�𝑦𝑦𝑗𝑗� is the consequence of failure for system component 𝑌𝑌 given the hazard level 𝑦𝑦𝑗𝑗. 

As shown in Equation 101Equation 102, the dependency between system components is modeled by the joint 
probability of the hazard functions 𝑃𝑃𝑋𝑋𝑋𝑋�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�. Dependency between system component hazard functions can be set 
as perfectly independent, positive, or negatively dependent. There is also an option to set the dependency between 
system components with a user-defined correlation matrix (see Appendix F).  
The joint failure mode approach in the previous section is used to estimate the combined consequences of failure and 
non-failure of the system. The user must also select a joint consequence rule: additive, average, maximum, or 
minimum. In the current version of RMC-TotalRisk, the failure modes within a system component are statistically 
independent from failure modes within all other system components. For example, the internal erosion failure at Dam 
A is independent of the internal erosion failure mode at Dam B. Considering this, Equation 102 needs to be expanded 
to include all combinations of failure as follows: 

𝔼𝔼[𝐶𝐶𝐹𝐹]Ω = ��𝑃𝑃𝑋𝑋𝑋𝑋 �𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗�
𝑗𝑗𝑖𝑖

∙ �𝑃𝑃 �𝐹𝐹𝑋𝑋|𝑥𝑥𝑖𝑖 ∩ 𝐹𝐹𝑌𝑌|𝑦𝑦𝑗𝑗������� ∙ 𝐶𝐶𝐹𝐹𝑋𝑋(𝑥𝑥𝑖𝑖) + 𝑃𝑃 �𝐹𝐹𝑋𝑋|𝑥𝑥𝑖𝑖������ ∩ 𝐹𝐹𝑌𝑌|𝑦𝑦𝑗𝑗� ∙ 𝐶𝐶𝐹𝐹𝑌𝑌 �𝑦𝑦𝑗𝑗�

+ 𝑃𝑃 �𝐹𝐹𝑋𝑋|𝑥𝑥𝑖𝑖 ∩ 𝐹𝐹𝑌𝑌|𝑦𝑦𝑗𝑗� ∙ �𝐶𝐶𝐹𝐹𝑋𝑋(𝑥𝑥𝑖𝑖) + 𝐶𝐶𝐹𝐹𝑌𝑌 �𝑦𝑦𝑗𝑗��� 

 Equation 103 
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The formulation in Equation 103 for accounting for joint failures is consistent with what has been presented in [5] and 
[45]. Computing system risk is computationally demanding. If traditional numerical integration techniques were used, 
the solution to Equation 103 would require 𝐾𝐾𝐷𝐷 iterations, where 𝐾𝐾 is the number of integration steps (or bins) and 𝐷𝐷 is 
the number of system components. If there were 100 integration steps and 5 system components, the solution would 
need 10 billion iterations. To avoid these computational limitations, RMC-TotalRisk uses an adaptive importance 
sampling method for computing system risk. Please see Appendix D for more details.  

 
Figure 39 - RMC-TotalRisk risk diagram with two system components. 
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Simulation Framework 
After the inputs have been defined in the risk diagram, the marginal risk for the individual failure modes, risk for the 
system components, and risk for the overall system can be computed. There are two simulation options: 1) Simulate 
Mean Risk Only, and 2) Simulate Risk with Full Uncertainty. The following subsections describe these options in 
greater detail.  

Mean Risk Only 
There are two primary components of randomness in a quantitative risk analysis: natural variability and knowledge 
uncertainty. Natural variability (NV) is best described as the effect of randomness and is a function of the system [8]. It 
is not reducible through either study or further measurement. Knowledge uncertainty (KU) is the lack of knowledge 
about the parameters or processes that characterize the system being modeled. It can be reduced through further 
measurement or study. The expected consequences estimated from a quantitative risk analysis are a function of both 
NV and KU of the model inputs: 

𝔼𝔼[𝐶𝐶] =  𝑓𝑓(𝑵𝑵𝑵𝑵,𝑲𝑲𝑲𝑲)  Equation 104 

For the mean risk only option, the effects of NV and KU are quantified by using the expected values of each input 
function in the overall risk analysis. For example, the expected consequences of failure considering both NV and KU 
in each function are estimated as follows: 

𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝔼𝔼[𝑃𝑃(𝑥𝑥𝑖𝑖)] ∙ 𝔼𝔼[𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)]
𝑖𝑖

∙ 𝔼𝔼[𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖)]  Equation 105 

where 𝔼𝔼[𝑃𝑃(𝑥𝑥𝑖𝑖)] is the expected probability of the hazard level 𝑥𝑥𝑖𝑖; 𝔼𝔼[𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)] is the expected conditional probability of 
failure given the hazard level 𝑥𝑥𝑖𝑖.; and 𝔼𝔼[𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖)] is the expected consequence of failure given the hazard level 𝑥𝑥𝑖𝑖. 

Equation 105 relies on the law of total expectation, which states that when random variables are statistically 
independent, the expectation of their product is the product of their expectations: 

𝔼𝔼[𝑋𝑋 ∙ 𝑌𝑌] =  𝔼𝔼[𝑋𝑋] ∙ 𝔼𝔼[𝑌𝑌]  Equation 106 

Using this simplifying assumption, simulating the mean risk only can be performed very efficiently with a single loop, 
as shown on the left side of Figure 40 below. In this figure, the white rectangles indicate where KU is accounted for, 
and the rounded light blue rectangles indicate where NV is accounted for.  

For the mean risk only option to be accurate, the mean hazard function and mean response function need to provide 
the expected probability given the hazard level, 𝔼𝔼[𝑝𝑝|𝑥𝑥]. This concept was first presented by Beard [46] as the 
expected probability of exceedance. The expected probability given the hazard level 𝔼𝔼[𝑝𝑝|𝑥𝑥] is not equal to the 
expected hazard given the probability 𝔼𝔼[𝑥𝑥|𝑝𝑝], due to asymmetries in NV and KU of the parent probability distribution.  

The mean risk only option will generally produce accurate estimates of the mean risk. For example, if the system 
response function is an event tree, the mean risk only option provides an exact estimate of 𝔼𝔼[𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)]. Whereas the 
full uncertainty option will have some minor Monte Carlo sampling errors when multiplying small probabilities in event 
trees. However, the the mean risk only option cannot capture all the combinations of low probability and high 
consequence events, which can lead to an underestimation of the tail risk. For scenarios where there is a lot of 
uncertainty in the extremes, it is recommended to simulate risk with full uncertainty.  

Flood risk management (FRM) decisions are commonly made based on the mean value of risk. The federal guidance 
for the economic evaluation of FRM studies is to use expected annual damages (or life loss) as the primary decision 
criterion [7] [11]. USACE regulation [11] requires dam safety alternatives to be evaluated using a cost-effectiveness 
measure called the cost-to-save-a-statistical-life (CSSL), which is estimated using expected annual life loss 
(lives/year) and expected annual economic damages ($/year). Considering these policy requirements, the mean risk 
only option provides an efficient and accurate simulation method for comparing risk reduction alternatives.  
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Figure 40 - Flowchart of the RMC-TotalRisk simulation options: (a) Simulate mean risk only, and (b) Simulate risk with full 
uncertainty. 

 

Risk with Full Uncertainty 
The second option in RMC-TotalRisk is to simulate risk with full uncertainty. This option requires much more 
computational effort, but it allows for the portrayal of KU and the development of confidence intervals on the risk 
results. If the risk analysts and decision makers are interested in exploring and evaluating ways to reduce KU, it is 
recommended to simulate risk with full uncertainty.  

Simulating risk with full uncertainty requires two loops, as shown on the right side of Figure 40. This Monte Carlo 
simulation approach is sometimes referred to as two-dimensional simulation [47] or two looped nested Monte Carlo 
[12]. For each Monte Carlo realization, new input functions are randomly sampled for every system component, 
following the procedures described in the respective input function chapters. For example, Algorithm 2 describes the 
parametric hazard function uncertainty analysis. Given the new set of input functions, risk is computed for each failure 
mode for each component in the system. After the simulation is complete, confidence intervals can be calculated 
using the results from all the Monte Carlo realizations.  

The full uncertainty simulation is more formally described in Algorithm 8 below. The user must enter the number of 
Monte Carlo realizations. The default is 1,000 to ensure reasonably accurate confidence intervals and shorter 
runtimes. Due to runtime and file size limitations, the maximum number of Monte Carlo realizations allowed is 10,000. 
As such, there is a potential for minor sampling errors in the mean risk results and percentiles. Please see Appendix 
C for details on Monte Carlo convergence.  
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Algorithm 8 – Simulate Risk with Full Uncertainty 
 
𝑅𝑅 ← number of Monte Carlo realizations 
𝐷𝐷 ← number of system components 
for 𝑖𝑖 ← 1 to 𝑅𝑅 do 

for 𝑗𝑗 ← 1 to 𝐷𝐷 do 
             𝑛𝑛𝐹𝐹 ← number of input functions in component 𝑗𝑗 

       for 𝑘𝑘 ← 1 to 𝑛𝑛𝐹𝐹 do 
             Sample new input function 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘

∗   given random percentile 𝑟𝑟𝑘𝑘~U(0,1). 
       end for 
       𝑛𝑛𝑓𝑓𝑓𝑓 ← number of failure modes in component 𝑗𝑗 
       for 𝑘𝑘 ← 1 to 𝑛𝑛𝑓𝑓𝑓𝑓 do 
             Compute risk of failure 𝔼𝔼[𝐶𝐶𝐹𝐹]𝑖𝑖,𝑘𝑘∗  for failure mode 𝑘𝑘 using new input functions 𝑭𝑭𝑖𝑖,𝑗𝑗∗  

           𝔼𝔼[𝐶𝐶𝐹𝐹]𝑖𝑖,𝑗𝑗∗ ← 𝔼𝔼[𝐶𝐶𝐹𝐹]𝑖𝑖,𝑗𝑗∗ + 𝔼𝔼[𝐶𝐶𝐹𝐹]𝑖𝑖,𝑘𝑘∗                                   ⊳Keep track of component risk of failure 
       end for        
       Compute risk of non-failure 𝔼𝔼[𝐶𝐶𝑁𝑁𝑁𝑁]𝑖𝑖,𝑗𝑗∗  for component 𝑗𝑗 

       Compute total risk 𝔼𝔼[𝐶𝐶𝑇𝑇]𝑖𝑖,𝑗𝑗∗ = 𝔼𝔼[𝐶𝐶𝐹𝐹]𝑖𝑖,𝑗𝑗∗ + 𝔼𝔼[𝐶𝐶𝑁𝑁𝑁𝑁]𝑖𝑖,𝑗𝑗∗  for component 𝑗𝑗  

𝔼𝔼[𝐶𝐶𝑇𝑇]Ω𝑖𝑖
∗ ← 𝔼𝔼[𝐶𝐶𝑇𝑇]Ω𝑖𝑖

∗ + 𝔼𝔼[𝐶𝐶𝑇𝑇]𝑖𝑖,𝑗𝑗∗                                                        ⊳Keep track of system risk 

⊳Note: This pseudo-code is for demonstration. In RMC-TotalRisk, all risk types are computed and recorded for each 
failure mode, each component, and the overall system.  

end for 
      Record all risk results for each risk type, component, and failure mode into a data frame: 
      𝜽𝜽𝑖𝑖∗ ← �𝔼𝔼[𝐶𝐶𝑇𝑇]Ω𝑖𝑖

∗ ,𝔼𝔼[𝐶𝐶𝑇𝑇]𝑖𝑖,1
∗ ,⋯ ,𝔼𝔼[𝐶𝐶𝑇𝑇]𝑖𝑖,𝐷𝐷

∗  � 
end for 
Estimate confidence intervals and mean risk results from realizations {𝜽𝜽𝟏𝟏∗ ,⋯ ,𝜽𝜽𝑹𝑹∗ }. 
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Risk Results 
In RMC-TotalRisk, there are three main ways to view the risk results: 1) the F-N plot; 2) the α-η plot; and 3) the 
summary statistics table. Each of these are described in more detail in the following subsections.  

F-N Plot 
The F-N plot has consequences (N) on the x-axis and the exceedance probability, or frequency of occurrence, (F) on 
the y-axis [48]. This type of plot is also commonly referred to as an F-N curve, survival function, or Farmer diagram. A 
log-log scale is typically used because the range of probabilities and consequences can span multiple orders of 
magnitude.  

The F-N curve is constructed by first sorting the risk results by decreasing values of consequences (N). Then, the 
probability of the consequences occurring (e.g.,  𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)) are summed to get the exceedance probability (or 
cumulative frequency). The overall risk integral is often evaluated at hundreds or even thousands of points during the 
risk compute. To reduce memory requirements in the software, the F-N curves are thinned down based on a user-
specified F-N output length, which by default is 200 points.  

An example F-N plot is provided in Figure 41 below. This example shows results from a risk analysis for a dam with 
both seismic and hydrologic failure modes. The incremental risk from seismic related failure modes is shown in red, 
the incremental risk from hydrologic failure modes in blue, and the combined incremental risk in black. As shown on 
the left side of the figure, results can be filtered by risk type and by system components and individual failure modes.  

 
Figure 41 - Example of F-N plot results. 
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By default, the USACE tolerable risk limit [11] is also plotted. The tolerable risk limit (or guideline) can be customized 
or removed from the plot. Figure 42 shows an F-N plot for another example risk analysis after simulating risk with full 
uncertainty. The 90% confidence interval is shown as a shaded bound. The mean and median curves are also 
provided.  

 
Figure 42 - Example of F-N plot results with confidence intervals. 

 

α-η Plot 
Risk results can be viewed with the α-η plot (pronounced as “alpha-N”), which is a commonly used in the USACE dam 
and levee safety programs for plotting incremental risk. In this plot, the conditional mean consequences (η) are plotted 
on the x-axis and the exceedance probability (α) on the y-axis. Like the F-N plot, a log-log scale is typically used 
because the range of probabilities and consequences can span multiple orders of magnitude. 

For the risk of failure and incremental risk, the conditional expectation is implicitly conditional on the critical hazard 
level 𝑥𝑥𝑐𝑐 beyond which there is a nonzero probability of failure 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑐𝑐) > 0. For example, the conditional expectation 
(η) for incremental risk is computed as follows: 

𝜂𝜂Δ = 𝔼𝔼[𝐶𝐶∆|𝑥𝑥 ≥ 𝑥𝑥𝑐𝑐] =
∑ 𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑥𝑥𝑐𝑐 ∙ 𝐶𝐶∆(𝑥𝑥𝑖𝑖)
∑ 𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑥𝑥𝑐𝑐

=
𝔼𝔼[𝐶𝐶∆]
𝛼𝛼Δ

  Equation 107 

where 𝐶𝐶∆(𝑥𝑥𝑖𝑖) = 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖); 𝑥𝑥𝑐𝑐 is the threshold hazard level where there is a nonzero probability of failure; and 𝛼𝛼Δ 
is the exceedance probability for which incremental consequences would occur.  
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The product of the exceedance probability and the conditional mean is equal to the unconditional mean: 

𝔼𝔼[𝐶𝐶∆] = 𝛼𝛼Δ ∙ 𝜂𝜂Δ  Equation 108 

In the USACE dam and levee safety programs, Equation 108 has traditionally been written as 𝑓𝑓 ∙ 𝑁𝑁�: 

𝔼𝔼[𝐶𝐶∆] = 𝑓𝑓Δ ∙ 𝑁𝑁�Δ  Equation 109 

However, in probability and statistics, 𝑓𝑓 is universally used as the symbol for the probability density function, not an 
exceedance probability. Therefore, to avoid any unnecessary confusion and to be consistent with other disciplines, 
RMC-TotalRisk uses 𝛼𝛼 as the symbol for exceedance probability.  

The α-η plot is only available for the risk of failure and incremental risk. Both risk types have the same exceedance 
probability, 𝛼𝛼F = 𝛼𝛼Δ. Total risk and background risk are both unconditional expectations where 𝛼𝛼 = 1.  The risk of non-
failure is a conditional expectation, where 𝛼𝛼𝑁𝑁𝑁𝑁 = 1 − 𝛼𝛼𝐹𝐹. However, 𝛼𝛼𝑁𝑁𝑁𝑁 is typically very close to 1, so there is no 
reason to plot it.  

An example α-η plot is shown in Figure 43 below. As with the previous F-N plot example, Figure 43 shows the 
incremental risk from seismic related failure modes in red, the incremental risk from hydrologic failure modes in blue, 
and the combined incremental risk in black. The combined incremental risk has an exceedance probability 𝛼𝛼Δ =
7.8626𝑒𝑒−4 and conditional mean incremental consequences 𝜂𝜂Δ = 700.2036. Stated another way, the annual 
probability of failure is 7.8626𝑒𝑒−4, and if the dam were to fail, the expected incremental life loss would be 700.2036.  

 
Figure 43 – Example of α-η plot results. 
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The diagonal of the α-η plot is equal to the product of α and η, which is the unconditional mean consequences, 𝔼𝔼[N] =
𝛼𝛼 ∙ 𝜂𝜂. The α-η points will typically plot near the inflection point of the F-N curve, with 𝛼𝛼 equaling the maximum 
exceedance probability from the F-N curve.  

Figure 44 shows an α-η plot after simulating risk with full uncertainty. The uncertainty is portrayed as a scatter cloud. 
To improve the visibility of this plot, the uncertainty scatter is thinned down to ensure a maximum of 1,000 points per 
system risk component.  

 
Figure 44 – Example of α-η plot results with uncertainty scatter. 

 

Summary Statistics 
Summary statistics are provided for each risk type being evaluated as shown in Figure 45 below. Statistics are 
provided for each failure mode for each system component, as well as for the full system. In the example shown in 
Figure 45, the probability of failure for the dam and each failure mode is provided in the column labelled “Ex. 
Probability, α”.  The expected incremental consequences given failure are provided in the “Conditional Mean, η” 
column. The expected annual incremental consequences are provided in the “Mean, E[N]” column. The product of α 
and η is equal to the mean, 𝔼𝔼[N] = 𝛼𝛼 ∙ 𝜂𝜂. Finally, the standard deviation of the incremental consequences is provided 
in the “Std. Deviation, σ” column. More details on these summary statistics are provided in Appendix B.  

The summary statistics for a risk analysis can be compared with other alternative analyses within the same study. 
Figure 46 below shows an example where the risk at a river reach without a new levee is compared to three 
alternative plans that include construction of a new levee. In this example, the total risk is displayed, therefore the 
exceedance probability 𝛼𝛼 = 1, the conditional mean equals the unconditional mean, 𝔼𝔼[N] = 𝜂𝜂.   
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Figure 45 - Example of summary statistics results. 

 

 
Figure 46 - Example of comparing alternative summary statistics results. 
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Diagnostics 
RMC-TotalRisk provides several diagnostics for exploring the Monte Carlo simulation results for a risk analysis. If no 
uncertainty has been defined in the risk analysis inputs, the diagnostic tools provide limited value. However, if 
uncertainty has been defined, the diagnostic features include the following: 

• Integration: The integration diagnostics include an estimate of the standard error of the computed total risk 
for the system, and the number of integrand function evaluations performed during the risk simulation. The 
diagnostics are graphically displayed as a kernel density or cumulative distribution plot. Summary statistics, 
including the mean, standard deviation, and key percentiles are provided in a table. Details on summary 
statistics and kernel density estimation are provided in Appendix B. Details on numerical integration are 
provided in Appendix D.  
 

• Risk Measures: Six risk measures are computed for all five risk types. A kernel density plot and cumulative 
distribution plot are provided to understand the shape and distribution of various risk measures. Summary 
statistics for each risk measure are provided in a table. More details on additional risk measures are provided 
in the next section.  

 
• Risk Profile: A risk profile plots the exceedance probabilities or conditional mean consequences against 

increasing hazard levels. The risk profile results can be filtered by system component and risk type. This plot 
is useful for identifying critical hazard levels where the probability of failure or risk sharply increases. 
 

• Assurance: An assurance plot and summary statistics are provided based on a user-defined profile hazard 
type and hazard threshold. This diagnostic is intended to support the National Flood Insurance Program for 
levees. More details are provided in Appendix I.  
 

• Tornado Plot: A tornado plot is provided for visually assessing how sensitive the risk results are to the input 
functions at each hazard level. The tornado plot is constructed based on the selected system component, risk 
type, and hazard level. The inputs are ranked from most sensitive at the top to least sensitive at the bottom. 
An example of a tornado plot is shown below in Figure 47. Details on the sensitivity analysis is provided in 
Appendix G.  
 

• X-Y Plot: The X-Y plot is provided for visually assessing the correlation between the different system risk 
components. Results can be filtered by the risk type, risk measure, and system risk components. For 
example, the overall risk of failure at the dam could be the Y parameter, and the risk of failure from an 
individual failure mode could be the X parameter.   
 

• Tabular: Tabular results are provided based on the selected risk type and risk measure. The table has a 
column for each system component and a row for each Monte Carlo realization. The data in this table can be 
exported, copied, or analysed using the table column tools. Summary statistics for each column in the table 
are available by right-clicking the column header. Details on these summary statistics are provided in 
Appendix B.  
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Figure 47 - Example of a tornado plot for risk diagnostics. 

Risk Measures 
RMC-TotalRisk provides additional risk measures that are useful for risk-based design of engineering structures. For 
example, a structure might be designed to a specified exceedance probability, e.g., 0.01 or a 100-year level of 
protection. The following subsections describe the risk measures and how they can be used to inform designs.  

Consequence Threshold Probability 
The user can enter a consequence threshold 𝑛𝑛. The probability of consequences exceeding the threshold will be 
recorded in the risk simulation. The default consequence threshold is 0. The exceedance probability is interpolated 
from the F-N curve, which is a survival function, for each risk type: 

𝑆𝑆(𝑛𝑛) = 1 − 𝐹𝐹(𝑛𝑛) =  𝑃𝑃(𝑁𝑁 ≥ 𝑛𝑛)  Equation 110 

After simulating risk with full uncertainty, a kernel density plot and summary statistics are provided as shown in Figure 
48 below.  The summary statistics are provided in a table on above the plot. The mean results are shown as a vertical 
dashed line on the plot. This risk measure provides the expected probability of exceedance of a specified 
consequence level.  

When designing a new levee, an objective could be that a consequence threshold of 0 should only be exceeded 
1:100 years, i.e., 𝑃𝑃(𝑁𝑁 ≥ 0) ≤ 0.01. From Figure 48, the mean threshold probability is 5.3103𝑒𝑒−3 and the 95th percentile 
is 9.1657𝑒𝑒−3, which demonstrates that the objective is satisfied, with at least 90% confidence.  

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
72 

 

 
Figure 48 - Example diagnostic plot for risk measures. 

 

Value-at-Risk 
The user can enter an exceedance probability 𝛼𝛼, such as 0.01. This exceedance probability is used for computing the 
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). The default exceedance probability is 0.01. The VaR 
provides the minimum consequences for the user-specified exceedance probability 𝛼𝛼. The value is interpolated from 
the F-N curve for each risk type: 

𝑆𝑆−1(𝛼𝛼) = 𝑛𝑛  Equation 111 

The objective for a new levee could be that the minimum consequences allowable for a 100-year flood must be 0. 
This risk measure can be used to determine if that design objective has been satisfied with a desired level of 
confidence. 

Conditional Value-at-Risk 
The Conditional Value-at-Risk (CVaR) provides the mean (or expected) consequences for the user-specified 
exceedance probability 𝛼𝛼. The value is computed by integrating under the F-N curve for each risk type in the 
prescribed probability range: 

𝔼𝔼[𝑁𝑁|𝑁𝑁 ≥ 𝛽𝛽] =
1
𝛼𝛼
� 𝑥𝑥 ∙ 𝑑𝑑𝑑𝑑(𝑥𝑥)
∞

𝛽𝛽

  Equation 112 

where 𝛽𝛽 =  𝑆𝑆−1(𝛼𝛼) = 𝑛𝑛. CVaR is estimated using numerical integration with adaptive Simpson’s rule (see Appendix D 
for more details).  
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The objective for a new levee could be that the mean consequences allowable for a 100-year flood must be less than 
100. This risk measure can be used to determine if that design objective has been satisfied with a desired level of 
confidence.  

Figure 49 and Figure 50 below illustrate the differences between the expected value (mean), VaR, and CVaR. The 
mean 𝔼𝔼[N] is the center of mass of the risk distribution. The VaR is evaluated at the exceedance probability 𝛼𝛼, and 
represents the minimum consequences at that point. The CVaR provides the average consequences for all events 
greater than VaR, which is illustrated as the light blue shaded region in both figures.    

 

 
Figure 49 – Density plot illustrating the differences between the expected value (mean), value-at-risk (VaR), and conditional value-
at-risk (CVaR). 

 

CVaR measures the expected consequences of an extreme event that exceeds the user-specified exceedance 
probability 𝛼𝛼. CVaR was developed in the financial industry to minimize the risk of unacceptable monetary loss in an 
investment portfolio [49]. Alternative names for CVaR found in literature are Average Value-at-Risk, Expected 
Shortfall, and Expected Tail Loss. CVaR belongs to a family of coherent risk measures that has stable integral 
characteristics [50], and is more conservative than the expected value and VaR. Smith [51] demonstrated that CVaR 
provides a robust risk-based optimization framework for flood risk management studies and provided a case study 
demonstrating how to use CVaR to optimize the design of a new levee.  
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Figure 50 - F-N plot illustrating the differences between the expected value (mean), value-at-risk (VaR), and conditional value-at-
risk (CVaR). 
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Appendix A – Probability Fundamentals 
This appendix provides an overview of essential probability concepts, axioms, and theorems. A solid grasp of these 
probability fundamentals is key to understanding how the quantitative risk analysis is performed in RMC-TotalRisk. 
Similar probability theory overviews are provided in [5], [52], and [53].  

Basic Terminology and Concepts 
This section provides definitions for basic probability terminology used commonly in probability theory and quantitative 
risk analyses.  

• Random experiment: An experiment where the outcome cannot be predicted with certainty. Tossing a coin 
or rolling a die is an example of a random experiment. 
 

• Sample space: The set of all possible outcomes for a single trial of a random experiment. For example, 
tossing a coin will result in heads or tails.   
 

• Random variable: A random variable assigns a value and corresponding probability to each outcome in a 
sample space. For example, heads = 1 and tails = 0.  
 

• Event: An event is a subset of the sample space. Following the coin example, tossing a head would be an 
event within the sample space.  

From any two (or more) events 𝐴𝐴 and 𝐵𝐵 other events can be created using the following operations: 

• Union of two events: The union of two events 𝐴𝐴 and 𝐵𝐵 denoted 𝐴𝐴 ∪ 𝐵𝐵, is the set of outcomes in either 𝐴𝐴 or 𝐵𝐵 
(inclusive or).  
 

• Intersection of two events: The intersection of two events 𝐴𝐴 and 𝐵𝐵 denoted 𝐴𝐴 ∩ 𝐵𝐵 is the set of all outcomes 
in both 𝐴𝐴 and 𝐵𝐵. 
 

• Complement of an event: The complement of an event 𝐴𝐴 is the set of outcomes not in 𝐴𝐴, denoted 𝐴̅𝐴.   
 

• Mutually exclusive events: If two events have no outcomes in common, they are mutually exclusive events. 
In that case, the occurrence of 𝐴𝐴 excludes the occurrence of 𝐵𝐵 and vice versa. This is also referred to as 
disjoint events. 
 

• Collectively exhaustive events: The set of events is collectively exhaustive if at least one of the events must 
occur. 

Venn diagrams are typically used to illustrate the relationships between events. For example, Figure 51 shows a Venn 
diagram representing two mutually exclusive events 𝐴𝐴 and 𝐵𝐵. Figure 52 shows a Venn diagram for two mutually 
exclusive and collective exhaustive events. For illustration purposes, in Figure 52, 𝐴𝐴 can represent tossing heads on a 
coin and 𝐵𝐵 represents tossing tails. Notice that the two rectangles are separated from each other and that there is no 
intersection between them. The coin can only be either heads or tails. Also take notice that the complete sample 
space Ω is also represented by the diagram. With the coin example, events A and B cover all the events within the 
entire sample space. This means that events A and B are collectively exhaustive.  
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Figure 51 - Venn diagram for two mutually exclusive events. 

 

 
Figure 52 - Venn diagram for two mutually exclusive and collectively exhaustive events. 

 

Figure 53 shows a diagram with intersecting events. The overlapping area is highlighted with a black border to 
illustrate the intersection between events 𝐴𝐴 and 𝐵𝐵. An example is picking a random card from a deck of cards. In this 
case, event 𝐴𝐴 could represent the event of selecting a King, and event 𝐵𝐵 could be the event of a red suit (hearts or 
diamonds). The intersection event represents selecting a red King. 
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Figure 53 - Venn diagram for intersection of two events. 

 

Finally, Figure 54 shows a diagram for the union of two events. Notice that the black border outlines the full area of 
the two overlapping events. Visually, the union of events 𝐴𝐴 and 𝐵𝐵 is the area of event 𝐴𝐴 plus the area of event 𝐵𝐵, 
minus the overlapping area of 𝐴𝐴 and 𝐵𝐵. In keeping with the deck of cards example, the union represents the event of 
selecting a King or a red suited card.  

 

 
Figure 54 - Venn diagram for the union of two events. 
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Probability Axioms 
Probability can be defined formally by the following axioms: 

I. The probability of any event is a non-negative real number. 

𝑃𝑃(𝐴𝐴) ≥ 0  Equation 113 

II. The probability that at least one event in the sample space Ω will occur is equal to one.  

𝑃𝑃(Ω) = 1  Equation 114 

III. The probability of union of two mutually exclusive events is the sum of their probabilities (the probability is 
additive over disjoint events). This is known as the addition rule for probability. 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) =  𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵)  Equation 115 

This axiom can be generalized to represent a set of 𝑛𝑛 mutually exclusive events: 

𝑃𝑃 ��𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = �𝑃𝑃(𝐸𝐸𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

  Equation 116 

Several important rules of probability can be proved from these axioms. This appendix will only discuss the probability 
rules and theorems most relevant for performing quantitative risk analysis.   

Conditional Probability 
The probability of an event 𝐴𝐴, irrespective of the outcome of another variable or event, is referred to as the marginal 
probability:  

𝑃𝑃(𝐴𝐴)  Equation 117 

The conditional probability is the probability of one event occurring in the presence of a second event: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵)   Equation 118 

An event is statistically independent if the occurrence of another event has no effect on the conditional probabilities of 
independent events: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴)  Equation 119 

For two positively dependent events, an event is more likely to occur in the presence of the other. Therefore, the 
conditional probability is greater than the marginal: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) > 𝑃𝑃(𝐴𝐴)  Equation 120 

For two negatively dependent events, an event is less likely to occur in the presence of the other. As such, the 
conditional probability is less than the marginal: 
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𝑃𝑃(𝐴𝐴|𝐵𝐵) < 𝑃𝑃(𝐴𝐴)  Equation 121 

If two events are mutually exclusive, the occurrence of 𝐴𝐴 excludes the occurrence of 𝐵𝐵, so the conditional probability 
is zero: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 0  Equation 122 

Therefore, mutually exclusive events are necessarily negatively dependent, with the only exception being cases 
where either one or both events have a marginal probability equal to zero. This also means mutually exclusive events 
are not independent, and independent events cannot be mutually exclusive.  

Joint Probability 
The joint probability of events 𝐴𝐴 and 𝐵𝐵 is the probability of the two events occurring in the same random experiment. 
This is also referred to as the probability of intersection: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴|𝐵𝐵) ∙ 𝑃𝑃(𝐵𝐵) =  𝑃𝑃(𝐵𝐵|𝐴𝐴) ∙ 𝑃𝑃(𝐴𝐴)  Equation 123 

This is known as the multiplication rule or chain rule for probability. For independent events, since the conditional 
probability equals the marginal probability, the joint probability becomes: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) ∙ 𝑃𝑃(𝐵𝐵)  Equation 124 

If two events are mutually exclusive, 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 0, so the joint probability between events 𝐴𝐴 and 𝐵𝐵 is also zero.  

Probability of Union 
The probability that events 𝐴𝐴 or 𝐵𝐵 (or both) occur is the probability of union of 𝐴𝐴 and 𝐵𝐵. When the events are mutually 
exclusive, the probability of union is: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) =  𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵)   Equation 125 

This is known as the addition rule for probability. If the events are not mutually exclusive, the intersection must be 
subtracted (as seen in Figure 54) as follows:  

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) =  𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)   Equation 126 

If the two events are statistically independent, then the conditional probability equals the marginal probability, so the 
probability of union becomes: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) =  𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴) ∙ 𝑃𝑃(𝐵𝐵)   Equation 127 

De Morgan’s Rule 
The probability that event 𝐴𝐴 does not occur is the probability of the complement of event 𝐴𝐴: 

𝑃𝑃(𝐴̅𝐴) =  1 − 𝑃𝑃(𝐴𝐴)   Equation 128 

This is known as the subtraction rule for probability. The complement of the union of two events is equal to the 
intersection of their complements: 
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𝐴𝐴 ∪ 𝐵𝐵������� =  𝐴̅𝐴 ∩ 𝐵𝐵�    Equation 129 

This is often referred to as De Morgan’s Law or De Morgan’s Rule. De Morgan’s Rule can be combined with the 
probability of a complement to provide an alternative method for calculating the probability of union for two statistically 
independent events: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) =  1 −  [1 − 𝑃𝑃(𝐴𝐴)] ∙ [1 − 𝑃𝑃(𝐵𝐵)]   Equation 130 

This calculation can be generalized to represent a set of 𝑛𝑛 independent events: 

𝑃𝑃 ��𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = 1 −�[1 − 𝑃𝑃(𝐸𝐸𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

  Equation 131 

This method simplifies the calculation for the probability of union when there are more than two statistically 
independent events.  

Inclusion-Exclusion Principle 
In combinatoric mathematics, the inclusion-exclusion principle generalizes the formula for computing the probability of 
union for many events with dependency: 

𝑃𝑃 ��𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = �𝑃𝑃(𝐸𝐸𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

− � 𝑃𝑃�𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸𝑗𝑗�
1≤𝑖𝑖<𝑗𝑗≤𝑛𝑛

+ � 𝑃𝑃�𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸𝑗𝑗 ∩ 𝐸𝐸𝑘𝑘�
1≤𝑖𝑖<𝑗𝑗<𝑘𝑘≤𝑛𝑛

− ⋯+ (−1)𝑛𝑛+1 ∙ 𝑃𝑃(𝐸𝐸𝑖𝑖 ∩ ⋯∩ 𝐸𝐸𝑛𝑛)  Equation 132 

 

This can be written in compact notation as: 

𝑃𝑃 ��𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = �(−1)𝑘𝑘+1
𝑛𝑛

𝑘𝑘=1

∙ � � 𝑃𝑃�𝐸𝐸𝑖𝑖1 ∩ ⋯∩ 𝐸𝐸𝑖𝑖𝑘𝑘�
1≤𝑖𝑖1<⋯<𝑖𝑖𝑘𝑘≤𝑛𝑛

�  Equation 133 

 

This equation can be more clearly understood by considering the case of three events 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 (see Figure 55). 
The probability union is given by: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶) =  𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) + 𝑃𝑃(𝐶𝐶)  − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐶𝐶) − 𝑃𝑃(𝐵𝐵 ∩ 𝐶𝐶) + 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)    Equation 134 

From this equation, the inclusion-exclusion principle can be generalized into the following recursive steps: 

1. Include the marginal probability of each event, 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) + 𝑃𝑃(𝐶𝐶) 
 

2. Exclude the pairwise joint probability, −𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐶𝐶) − 𝑃𝑃(𝐵𝐵 ∩ 𝐶𝐶) 
 

3. Include the triple-wise joint probability, +𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶)   
 

4. Continue until the 𝑛𝑛-tuple-wise joint probability is included (if 𝑛𝑛 is odd) or excluded (if 𝑛𝑛 is even) 

Figure 55 shows the Venn diagram for the union of three events. There are 8 possible unique combinations of events. 
The union 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶, which is visualized with the black border, contains 7 of these events.  
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Figure 55 - Venn diagram for the union of three events. 

Combinations of Events 
Combinatoric mathematics has an important role in how RMC-TotalRisk combines probabilities for multiple failure 
modes and multiple system elements. Combinatorics is a broad field and there are books on this subject alone. For 
the sake of brevity, there are two key concepts that are integral for computing system risk. First, is determining the 
number of ways the system can fail. Failure and non-failure are binary; that is, there are only two possible outcomes 
for the system. However, if there are multiple failure modes, the number of possible ways the system can fail is: 

2𝑛𝑛 − 1  Equation 135 

For example, as seen in Figure 55, if there are 3 failure modes (events), there are 7 ways in which the system can fail. 
As the number of failure modes and system components increase, the number of ways the system can fail increases 
exponentially.  

The second key concept is how to determine the number of ways that 𝑘𝑘 subevents can occur from among 𝑛𝑛 total 
events when the order of the events does not matter. In other words, the number of 𝑘𝑘-event combinations in an 𝑛𝑛-
event set. This is given by the binomial coefficient: 

�
𝑛𝑛
𝑘𝑘
� =

𝑛𝑛!
𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)!

  Equation 136 

For example, there are 3 combinations of 2-failure event subsets among 3 possible failure modes (events): 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵), 
𝑃𝑃(𝐴𝐴 ∩ 𝐶𝐶), and 𝑃𝑃(𝐵𝐵 ∩ 𝐶𝐶). 

Law of Total Probability 
The law of total probability gives the total probability of an event by summing across distinct events. This is also 
referred to as the total probability theorem. The idea behind the law of total probability is illustrated using a Venn 
diagram in Figure 56. If 𝐵𝐵1,𝐵𝐵2,𝐵𝐵3,⋯ is a partition of the sample space Ω, then for any event 𝐴𝐴, the total probability is 
given by: 

𝑃𝑃(𝐴𝐴) = �𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵𝑖𝑖)
𝑖𝑖

=  �𝑃𝑃(𝐴𝐴|𝐵𝐵𝑖𝑖)
𝑖𝑖

∙ 𝑃𝑃(𝐵𝐵𝑖𝑖)  Equation 137 
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Stated another way, to find the total probability of event 𝐴𝐴, the sample space Ω can be partitioned into bins. The 
probability 𝑃𝑃(𝐴𝐴) is then determined by adding the amount of probability of 𝐴𝐴 that falls into each partition. The law of 
total probability is instrumental in performing quantitative risk analysis.  

 
Figure 56 - Venn diagram of the law of total probability. 

Bayes’ Theorem 
Suppose that 𝑃𝑃(𝐴𝐴|𝐵𝐵) is known but 𝑃𝑃(𝐵𝐵|𝐴𝐴) is not. Using the rules for conditional probability described above, the joint 
probability of events 𝐴𝐴 and 𝐵𝐵 is: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴|𝐵𝐵) ∙ 𝑃𝑃(𝐵𝐵) =  𝑃𝑃(𝐵𝐵|𝐴𝐴) ∙ 𝑃𝑃(𝐴𝐴)  Equation 138 

Divide each side by 𝑃𝑃(𝐴𝐴) to obtain: 

𝑃𝑃(𝐵𝐵|𝐴𝐴) =
𝑃𝑃(𝐴𝐴|𝐵𝐵) ∙ 𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐴𝐴)   Equation 139 

which is Bayes’ rule. 𝑃𝑃(𝐵𝐵) is considered the prior probability of 𝐵𝐵, and 𝑃𝑃(𝐵𝐵|𝐴𝐴) is the posterior probability given 𝐴𝐴. To 
find 𝑃𝑃(𝐴𝐴) in the denominator, the law of total probability is used as follows: 

𝑃𝑃�𝐵𝐵𝑗𝑗|𝐴𝐴� =
𝑃𝑃�𝐴𝐴|𝐵𝐵𝑗𝑗� ∙ 𝑃𝑃�𝐵𝐵𝑗𝑗�
∑ 𝑃𝑃(𝐴𝐴|𝐵𝐵𝑖𝑖)𝑖𝑖 ∙ 𝑃𝑃(𝐵𝐵𝑖𝑖)

  Equation 140 

While Bayes’ theorem is not used directly in RMC-TotalRisk, hazard functions can be imported from the Bayesian 
Estimation and Fitting software, RMC-BestFit. For more details on Bayesian estimation, please see [22] and [23]. 
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Discrete Random Variables 
A random variable assigns a value and corresponding probability to each outcome in a sample space. Random 
variables can be numerical or categorical. A discrete random variable has a countable number of discrete values. For 
example, there are six sides to a die. The outcome of rolling a die is a discrete random variable. There are exactly six 
possible values for the random variable. Examples of discrete random variables in risk analysis is the number of 
spillway gates that can fail or not fail during a flood event. The probability distribution of a discrete random variable is 
called the probability mass function (PMF): 

𝑝𝑝(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)  Equation 141 

The cumulative distribution function (CDF) for a discrete random variable is defined as: 

𝐹𝐹(𝑥𝑥) =  𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)  Equation 142 

which is calculated from the sum of the PMF: 

𝐹𝐹(𝑥𝑥) = �𝑝𝑝(𝑡𝑡)
𝑡𝑡≤𝑥𝑥

  Equation 143 

The probabilities 𝑃𝑃(𝑥𝑥) must satisfy the following: 

0 ≤ 𝑃𝑃(𝑥𝑥𝑖𝑖) ≤ 1 for each 𝑖𝑖  Equation 144 

�𝑝𝑝(𝑥𝑥)
𝑥𝑥

= 1 
 Equation 145 

Continuous Random Variables 
A continuous random variable can be an infinite number of possible values. Examples of continuous random variables 
in risk analysis are streamflow, water surface elevation, seismic ground motion, and structural resistance to hydraulic 
loading. The probability for a specific value of a continuous random variable is not defined. Instead, it is defined over 
an interval (or range) of values. A continuous random variable 𝑋𝑋 has a probability density function (PDF, 𝑓𝑓(𝑥𝑥)): 

𝑃𝑃(𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏) = �𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

  Equation 146 

where 𝑎𝑎 and 𝑏𝑏 are any two numbers, with 𝑎𝑎 <  𝑏𝑏. Then, 

� 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
+∞

−∞

= 1  Equation 147 

The cumulative distribution function (CDF) can then be defined as: 

𝐹𝐹(𝑥𝑥) =  𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = �𝑓𝑓(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑
𝑥𝑥

−∞

   Equation 148 
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where 𝐹𝐹(𝑥𝑥) is the nonexceedance probability (0 ≤ 𝐹𝐹(𝑥𝑥) ≤ 1) for value 𝑥𝑥 of a random variable 𝑋𝑋. The PDF is the 
derivative of the CDF: 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

  Equation 149 

The complementary CDF, commonly referred to as the survival function, provides the exceedance probability: 

𝑆𝑆(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥) =  𝑃𝑃(𝑋𝑋 > 𝑥𝑥)  Equation 150 

The F-N curves used for portraying risk results are like survival functions except F-N curves are defined as 𝑃𝑃(𝑋𝑋 ≥ 𝑥𝑥). 
Finally, the inverse CDF, commonly called the quantile function, provides the value of 𝑥𝑥 where 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = 𝑝𝑝. The 
inverse CDF is defined as: 

𝐹𝐹−1(𝑝𝑝) = 𝑥𝑥  Equation 151 

The inverse CDF is instrumental to performing Monte Carlo simulation (see Appendix C).  
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Appendix B – Summary Statistics 
This appendix provides mathematic details on the risk result summary statistics provided in RMC-TotalRisk.  

Moments 
The moments of a distribution provide useful quantitative measures related to the shape of the distribution function. 
The raw moments (moments about zero) of a continuous distribution are defined as: 

𝜇𝜇𝑖𝑖′ = � 𝑥𝑥𝑖𝑖 ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

  Equation 152 

and for discrete distributions as: 

𝜇𝜇𝑖𝑖′ = �𝑥𝑥𝑗𝑗𝑖𝑖 ∙ 𝑝𝑝�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑗𝑗=0

  Equation 153 

The zero raw moment is equal to one as required by the second probability axiom: 

𝜇𝜇0′ = � 𝑥𝑥0 ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

= � 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

= 1  Equation 154 

The first raw moment is the mean, or expected value, and it is the center of mass of the distribution: 

𝜇𝜇 = 𝜇𝜇1′ = 𝔼𝔼[𝑋𝑋] = � 𝑥𝑥 ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

  Equation 155 

The central moments (moments about the mean) of a continuous distribution are defined as: 

𝜇𝜇𝑖𝑖 = 𝔼𝔼�(𝑋𝑋 − 𝜇𝜇)𝑖𝑖� = �(𝑥𝑥 − 𝜇𝜇)𝑖𝑖 ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

  Equation 156 

The second central moment is the variance, 𝜎𝜎2, which provides a measure of dispersion about the mean: 

𝜎𝜎2 = 𝜇𝜇2 = 𝔼𝔼[(𝑋𝑋 − 𝜇𝜇)2] =  �(𝑥𝑥 − 𝜇𝜇)2 ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

  Equation 157 

The square root of the variance is the standard deviation, 𝜎𝜎 = √𝜎𝜎2. The standardized central moment of a continuous 
distribution is the central moment normalized by the standard deviation to render the moment scale invariant.  

𝜇𝜇�𝑖𝑖 = 𝔼𝔼 ��
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

�
𝑖𝑖
� = � �

𝑋𝑋 − 𝜇𝜇
𝜎𝜎

�
𝑖𝑖
∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑

∞

−∞

  Equation 158 

The third standardized central moment is skewness, which provides a measure of symmetry: 
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𝛾𝛾 = 𝜇𝜇�3 = 𝔼𝔼 ��
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

�
3
� = � �

𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
3
∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑

∞

−∞

  Equation 159 

Finally, the fourth standardized central moment is kurtosis, which provides a measure of tail thickness or heaviness: 

𝜅𝜅 = 𝜇𝜇�4 = 𝔼𝔼 ��
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

�
4
� = � �

𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
4
∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑

∞

−∞

  Equation 160 

RMC-TotalRisk reports the mean and standard deviation of the F-N curves to provide useful summary statistics 
related to the shape of those loss distributions.  

Conditional Expectation 
A conditional expectation is defined as the expected value of a random variable given that this value lies within some 
prescribed probability range [54]: 

𝔼𝔼[𝑋𝑋|𝑋𝑋 ≥ 𝛽𝛽] =
∫ 𝑥𝑥 ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑∞
𝛽𝛽

∫ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑∞
𝛽𝛽

  Equation 161 

The denominator is Equation 161 is the exceedance probability 𝛼𝛼 of the condition 𝛽𝛽: 

𝛼𝛼 = 𝐹𝐹(𝑥𝑥 > 𝛽𝛽) = 1 − 𝐹𝐹(𝑥𝑥 ≤ 𝛽𝛽)  Equation 162 

Substituting Equation 162 into Equation 161, the following is obtained: 

𝔼𝔼[𝑋𝑋|𝑋𝑋 ≥ 𝛽𝛽] =
1
𝛼𝛼
� 𝑥𝑥 ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

𝛽𝛽

  Equation 163 

If 𝛼𝛼 = 1 then the conditional expectation 𝔼𝔼[𝑋𝑋|𝑋𝑋 ≥ 𝛽𝛽] is equivalent to the unconditional expectation 𝔼𝔼[𝑋𝑋]. Equation 163 
is commonly referred to as the Conditional Value-at-Risk (CVaR). Alternative names for CVaR found in literature are 
Average Value-at-Risk, Expected Shortfall, and Expected Tail Loss.   

The conditional expectation depends on where the probability axis of the distribution is partitioned. The distribution 
can be partitioned by conditioning on 𝑥𝑥 values or probability values. In economics and finance, CVaR is often 
estimated based on a specified exceedance probability 𝛼𝛼 rather than a threshold hazard level or event, 𝛽𝛽. In this case, 
𝛽𝛽 =  𝐹𝐹−1(1 − 𝛼𝛼).  

In RMC-TotalRisk, a conditional expectation is computed for each risk type. For the risk of failure and incremental risk, 
the conditional expectation is conditional on the critical hazard level 𝑥𝑥𝑐𝑐 beyond which there is a nonzero probability of 
failure 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑐𝑐) > 0. For example, the conditional expectation for incremental risk is: 

𝜂𝜂Δ = 𝔼𝔼[𝐶𝐶∆|𝑥𝑥 ≥ 𝑥𝑥𝑐𝑐] =
∑ 𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑥𝑥𝑐𝑐 ∙ 𝐶𝐶∆(𝑥𝑥𝑖𝑖)
∑ 𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑥𝑥𝑐𝑐

=
𝔼𝔼[𝐶𝐶∆]
𝛼𝛼Δ

  Equation 164 

where 𝐶𝐶∆(𝑥𝑥𝑖𝑖) = 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐶𝐶𝑁𝑁𝑁𝑁(𝑥𝑥𝑖𝑖); 𝑥𝑥𝑐𝑐 is the threshold hazard level; and 𝛼𝛼Δ is the exceedance probability for which 
incremental consequences would occur.  
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Percentiles 
In statistics, given an array of data 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, the 𝑘𝑘-th percentile gives the nonparametric inverse CDF, 
𝐹𝐹−1(𝑘𝑘) = 𝑥𝑥𝑘𝑘. If the 𝑘𝑘-th percentile is 0.9 (90%), then 90% of the values in 𝒙𝒙 are less than 𝐹𝐹−1(0.9) = 𝑥𝑥0.9. There is no 
standard method for computing a percentile, but all methods yield similar results when the number of observations is 
very large. RMC-TotalRisk uses Definition 7 from Hyndman and Fan [55] which is the same method used by the 
PERCENTILE and PERCENTILE.INC functions in Microsoft Excel®. First, the data values are sorted in ascending 
order. Then, the location of the 𝑘𝑘-th percentile is computed as: 

𝑚𝑚 = (𝑛𝑛 − 1) ∙ 𝑘𝑘 + 1  Equation 165 

where 𝑛𝑛 is the length of the value array 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}. If 𝑚𝑚 = 1 then return the first value in the array 𝑥𝑥1. If 𝑚𝑚 = 𝑛𝑛 
then return the last value in the array 𝑥𝑥𝑛𝑛. Otherwise, the 𝑘𝑘-th percentile 𝑥𝑥𝑘𝑘 is interpolated as: 

𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚)  Equation 166 

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑖𝑖 + (𝑚𝑚 − 𝑖𝑖) ∙ (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)  Equation 167 

Kernel Density Estimation 
To visualize the distribution of an array of Monte Carlo output data 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, RMC-TotalRisk performs kernel 
density estimation (KDE). KDE is a nonparametric method for estimating the probability density function of a random 
variable. Let 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} be independent and identically distributed samples. The kernel density estimator is 
estimated as: 

𝑓𝑓(𝑥𝑥) =  
1
𝑛𝑛ℎ

�𝐾𝐾�
𝑥𝑥 − 𝑥𝑥𝑖𝑖
ℎ

�
𝑛𝑛

𝑖𝑖=1

  Equation 168 

where 𝑛𝑛 is the length of the value array 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}; ℎ is the bandwidth; and 𝐾𝐾 is the kernal. TotalRisk uses the 
standard normal distribution for the kernel function, 𝐾𝐾 = 𝜙𝜙. The bandwidth is estimated as: 

ℎ = 𝜎𝜎 �
4

3𝑛𝑛
�
1
5
  Equation 169 

Where 𝜎𝜎 is the sample standard deviation of 𝒙𝒙. To compute percentiles, the data is sorted in ascending order, and 
given a Weibull plotting position 𝑝𝑝𝑖𝑖 = 𝑟𝑟

𝑛𝑛+1
, where 𝑟𝑟 is the rank of the 𝑖𝑖-th data value. Then, the nonparametric inverse 

CDF is computed from linear interpolation: 

𝐹𝐹−1(𝑝𝑝) =  𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) �
𝑝𝑝 − 𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖

�  Equation 170 

 

Figure 57 provides an example of the kernel density plot and summary statistics provided for risk measures.  
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Figure 57 - Example of the kernel density and percentile output for risk measures. 

Histogram 
A histogram is an approximate representation of the distribution of an array of data 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}. A histogram can 
be thought of as a simplified kernel density estimation. Histograms are constructed by first binning the range of values 
and then counting how many values fall into each bin. By default, RMC-TotalRisk uses the “Rice Rule” to select the 
number of bins: 

𝑘𝑘 = 2√𝑛𝑛3   Equation 171 

Then, the bin width is estimated as: 

ℎ =
max 𝒙𝒙 − min 𝒙𝒙

𝑘𝑘
  Equation 172 

The bins are then specified as consecutive, non-overlapping intervals of equal size. Figure 58 shows an example of 
the histogram and summary statistics output that is displayed when right-clicking the table column header. From 
Figure 57 and Figure 58, the kernel density and histogram plots both provide similar information on the distribution of 
the output data.  
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Figure 58 - Example of the histogram and summary statistics output for tabular data. 
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Appendix C – Monte Carlo Simulation 
Monte Carlo simulation uses repeated sampling to solve a problem numerically. Monte Carlo simulation is typically 
used for three types of numerical problems: optimization, integration, and uncertainty analysis. RMC-TotalRisk uses 
Monte Carlo to perform uncertainty analysis.  

The first step in a Monte Carlo analysis is to construct a model, such as an event tree or risk analysis in RMC-
TotalRisk. The second step is to define probability distributions that describe the uncertainty in model inputs, such as 
the uncertainty in the hazard, system response, and consequence functions. Finally, the Monte Carlo simulation is 
performed, where a value is drawn at random from the distribution of each model input. Together, this set of random 
values, one for each input, defines a scenario, which is used as input to the model to compute corresponding model 
output values. The entire process is repeated 𝑁𝑁 times producing 𝑁𝑁 independent scenarios with corresponding output 
values. Each set of random values, or scenarios, is commonly referred to as a realization. The 𝑁𝑁 realizations for each 
model output can then be used to quantify the uncertainty in the model outputs. 

Inverse Transform Sampling 
Inverse transform sampling is a method commonly used to generate the random samples of a random variable from 
its distribution. The method is derived from the inverse probability integral transform, which states that if 𝑌𝑌 has a 
uniform distribution on the closed interval [0,1] and 𝑋𝑋 is a random variable having a cumulative distribution function of 
𝐹𝐹𝑋𝑋(𝑋𝑋), then the random variable 𝐹𝐹𝑋𝑋−1(𝑌𝑌) has the same distribution as 𝑋𝑋.   

A key aspect of a Monte Carlo simulation is the random number generator. It is important to understand that these 
random numbers are generated from a deterministic algorithm and are more correctly called pseudorandom numbers. 
A pseudorandom number generator (PRNG) is used to create uniform random numbers in the interval [0, 1]. A PRNG 
seed initializes the sequence of random numbers and can be set to ensure repeatability of the Monte Carlo results. All 
RMC software uses the subtractive PRNG algorithm built into the Microsoft® .NET framework [56]. 

A random number generated by the PRNG corresponds to the CDF (nonexceedance probability) of the input 
probability distribution. For example, consider the distribution of an uncertain input variable 𝑋𝑋. As shown in Appendix 
A, the CDF gives the probability that the variable X is less than or equal to x:  

𝐹𝐹(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)  Equation 173 

𝐹𝐹(𝑥𝑥) ranges from 0 to 1. The inverse CDF describes the value of 𝑥𝑥 for a given nonexceedance probability, 𝑝𝑝: 

𝐹𝐹−1(𝑝𝑝) = 𝑥𝑥  Equation 174 

The inverse CDF (or quantile function) is central to the generation of random samples from each input distribution in a 
Monte Carlo simulation. To generate a random sample for a probability distribution, a random number r ~𝑈𝑈[0, 1] is 
generated and then input into the inverse CDF to calculate the corresponding 𝑥𝑥 value that is randomly generated from 
the distribution: 

𝑥𝑥 =  𝐹𝐹−1(𝑟𝑟)  Equation 175 

For demonstration, assume an input has a Normal distribution with a mean of 100 and standard deviation of 15. 
Figure 59 shows the inverse CDF of the distribution and provides a graphical representation of the Monte Carlo 
sampling process. It shows that the random number of 𝑟𝑟 = 0.748 corresponds to a value of 𝑥𝑥 = 110.   
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Figure 59 – Illustration of Monte Carlo sampling process with the inverse CDF.  

Convergence 
In a Monte Carlo simulation, many random numbers are generated and the corresponding 𝑥𝑥 values are recorded. 
Convergence is guaranteed as the number of samples approaches infinity. However, Monte Carlo simulation results 
can exhibit substantial statistical fluctuation for small samples. The choice in the number of Monte Carlo realizations 𝑁𝑁 
should depend on both the simulation runtime, and the intended use of the results. If precision in the mean is the most 
important consideration, the minimum number of realizations 𝑁𝑁 can be estimated as follows: 

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝜎𝜎
𝜀𝜀 ∙ 𝜇𝜇

∙ Φ−1 �
1 + 𝛼𝛼

2
��
2

  Equation 176 

where 𝜇𝜇 is the output mean; 𝜎𝜎 is the output standard deviation; 𝜀𝜀 is the desired error (e.g., 𝜀𝜀 = 0.01 = 1% error); 
Φ−1(∙) is the inverse CDF of the standard Normal distribution; and 𝛼𝛼 is the confidence interval width. For example, 
with a mean of 100 and standard deviation of 15, a minimum of 865 realizations are required to be 95% confident the 
Monte Carlo output mean is 100 ± 1%.   

Another criterion for selecting the number of Monte Carlo realizations is the precision of a percentile (fractile) of the 
output, e.g., the 5th and 95th percentiles define the 90% confidence interval of a model output. In this case, the 
minimum number of realizations is calculated as: 

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝 ∙ (1 − 𝑝𝑝) ∙ �
Φ−1 �1 + 𝛼𝛼

2 �
∆𝑝𝑝

�

2

  Equation 177 

where 𝑝𝑝 is the percentile of interest (e.g., 0.95); ∆𝑝𝑝 is the tolerance for the percentile (e.g., ±0.01); Φ−1(∙) is the 
inverse CDF of the standard Normal distribution; and 𝛼𝛼 is the confidence interval width. For example, a minimum of 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
96 

 

1,825 realizations are required to be 95% confident the Monte Carlo output 95th percentile is between the true 94th and 
96th percentiles [𝑝𝑝 − ∆𝑝𝑝,𝑝𝑝 + ∆𝑝𝑝]. 

To further illustrate the concept of convergence, Figure 60 shows a Monte Carlo simulation with just 100 realizations. 
The histogram (shown in red) of the 100 samples does not closely match the true input distribution (shown in black). 
Figure 61 shows a Monte Carlo simulation with 1,000 realizations. The simulation results are beginning to converge 
towards the true input distribution. Finally, Figure 62 shows a Monte Carlo with 10,000 realizations. From this plot, it is 
clear the simulation results have closely converged towards the true distribution. The percent errors in the output 
mean and 95th percentile is provided in Table 8 and Table 9, respectively. Figure 63 and Figure 64 illustrate the Monte 
Carlo convergence in the output mean and 95th percentile as the number of realizations increases towards 10,000.  

In RMC-TotalRisk, the default number of realizations in the risk analysis is 10,000. This ensures the risk analysis 
runtime is manageable and provides sufficient precision for the output mean and confidence interval percentiles. More 
information on selecting the number of Monte Carlo realizations is provided in [57] and [58]. 

 Table 8 - Assessing Monte Carlo convergence in the output mean. 

Realizations Simulated Mean True Mean % Error 
100 97.69 100 2.31% 

1,000 99.75 100 0.25% 
10,000 99.97 100 0.03% 

 

Table 9 - Assessing Monte Carlo convergence in the output 95th percentile. 

Realizations Simulated 0.95 True 0.95 % Error 
100 122.94 124.67 1.39% 

1,000 125.28 124.67 0.49% 
10,000 124.87 124.67 0.16% 

 

 
Figure 60 - Monte Carlo Simulation with 100 samples. 
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Figure 61 - Monte Carlo Simulation with 1,000 samples. 

 

  
 Figure 62 - Monte Carlo Simulation with 10,000 samples. 

 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
98 

 

 

Figure 63 – Illustration of Monte Carlo convergence in the output mean. 

 

 

 

 

Figure 64 – Illustration of Monte Calo convergence in the output 95th percentile. 
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Appendix D – Numerical Integration 
In RMC-TotalRisk, within every Monte Carlo realization, risk is computed using numerical integration. To establish a 
foundation in numerical integration techniques, this appendix provides a tutorial on integrating a probability distribution 
using the trapezoidal rule. Then, a simple risk analysis example is provided to demonstrate the steps required to 
compute the risk of failure.  

Next, more sophisticated adaptive integration techniques are introduced and demonstrated. RMC-TotalRisk uses two 
adaptive integration methods: 1) Adaptive Simpson’s Rule is used for single component system risk analyses; and 2) 
VEGAS, an adaptive importance sampling method, is used for multiple component system risk analyses. Algorithmic 
details on the two adaptive integration methods used in RMC-TotalRisk are provided.  

Integrating a Probability Distribution 
Recall that risk is generally computed as the expected value of a probability distribution: 

𝔼𝔼[𝑋𝑋] = � 𝑥𝑥
∞

−∞

∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑  Equation 178 

where 𝑓𝑓(𝑥𝑥) is the PDF of the probability distribution. Definite integrals can be numerically solved with Riemann sums, 
such as the trapezoidal rule. The method works by approximating the region under the function 𝑔𝑔(𝑥𝑥) = 𝑥𝑥 ∙ 𝑓𝑓(𝑥𝑥) as a 
trapezoid and calculating its area: 

𝔼𝔼[𝑋𝑋] = �𝑔𝑔(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

≈ �
𝑔𝑔(𝑎𝑎) + 𝑔𝑔(𝑏𝑏)

2
� ∙ (𝑏𝑏 − 𝑎𝑎)  Equation 179 

𝔼𝔼[𝑋𝑋] = �𝑥𝑥
𝑏𝑏

𝑎𝑎

∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑 ≈ �
𝑎𝑎 ∙ 𝑓𝑓(𝑎𝑎) + 𝑏𝑏 ∙ 𝑓𝑓(𝑏𝑏)

2
� ∙ (𝑏𝑏 − 𝑎𝑎)  Equation 180 

This approximation can be improved by partitioning (or binning) the integration interval [𝑎𝑎, 𝑏𝑏] and then applying the 
trapezoidal rule to each subinterval and summing the results: 

𝔼𝔼[𝑋𝑋] = ��
𝑥𝑥𝑎𝑎𝑖𝑖 ∙ 𝑓𝑓�𝑥𝑥𝑎𝑎𝑖𝑖� + 𝑥𝑥𝑏𝑏𝑖𝑖 ∙ 𝑓𝑓�𝑥𝑥𝑏𝑏𝑖𝑖�

2
� ∙ �𝑥𝑥𝑏𝑏𝑖𝑖 − 𝑥𝑥𝑎𝑎𝑖𝑖�

𝐾𝐾

𝑖𝑖=1

  Equation 181 

To ensure the integration of the probability distribution is collectively exhaustive ∫ 𝑓𝑓(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎 = 1, rectangular areas 

can be added to the first and last subintervals as follows:  

𝔼𝔼[𝑋𝑋] = 𝑥𝑥𝑎𝑎1 ∙ 𝐹𝐹�𝑥𝑥𝑎𝑎1� +  ��
𝑥𝑥𝑎𝑎𝑖𝑖 ∙ 𝑓𝑓�𝑥𝑥𝑎𝑎𝑖𝑖� + 𝑥𝑥𝑏𝑏𝑖𝑖 ∙ 𝑓𝑓�𝑥𝑥𝑏𝑏𝑖𝑖�

2
� ∙ �𝑥𝑥𝑏𝑏𝑖𝑖 − 𝑥𝑥𝑎𝑎𝑖𝑖� + 𝑥𝑥𝑏𝑏𝐾𝐾 ∙ �1 − 𝐹𝐹�𝑥𝑥𝑏𝑏𝐾𝐾��

𝐾𝐾

𝑖𝑖=1

  Equation 182 

where 𝐹𝐹(∙) is the CDF; 𝐾𝐾 is the number of integration bins (or subintervals); and the total number of computational 
steps is 𝐾𝐾 + 2. The trapezoidal rule accuracy improves with increasing number of bins, 𝐾𝐾. 
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Example calculations of the trapezoidal rule integration of a distribution using Equation 182 is provided in Table 10 
below. In this example, the goal is to compute the mean of a Gamma distribution with a scale of 𝜃𝜃 = 5 and shape of 
𝜅𝜅 = 10. The true mean is 𝜇𝜇 = 50. The integration limits were set as 𝑎𝑎 = 𝐹𝐹−1(0.001) = 14.80 and 𝑏𝑏 = 𝐹𝐹−1(0.999) =
113.29. There are five integration bins, with a total of 5 + 2 = 7 computation steps. The mean from numerical 
integration is estimated as 49.981, which has less than a 0.1% error from the true value. 

The five trapezoidal integration bins are show in Figure 65 shown in black dots. The true distribution is shown as solid 
blue. The five bins are enough to capture the general shape of the true distribution. The accuracy will improve by 
increasing the number of bins.  

Table 10 - Example calculations of the trapezoid rule integration of a distribution using the PDF. 

Bin 𝒙𝒙𝒂𝒂 𝒙𝒙𝒃𝒃 𝒙𝒙 ∙ 𝒇𝒇(𝒙𝒙)���������� 𝒅𝒅𝒅𝒅 𝒙𝒙 ∙ 𝒇𝒇(𝒙𝒙)���������� ∙ 𝒅𝒅𝒅𝒅  

     0.015 ← 𝑥𝑥𝑎𝑎1 ∙ 𝐹𝐹�𝑥𝑥𝑎𝑎1� 

1 14.80 34.50 0.343 19.70 6.763  

2 34.50 54.20 0.945 19.70 18.607  

3 54.20 73.89 0.866 19.70 17.065  

4 73.89 93.59 0.315 19.70 6.213  

5 93.59 113.29 0.061 19.70 1.204  

     0.113 ← 𝑥𝑥𝑏𝑏5 ∙ �1 − 𝐹𝐹�𝑥𝑥𝑏𝑏5�� 

𝔼𝔼[𝑿𝑿] = � = 49.981  
 

 

 
Figure 65 - Example of trapezoidal bins versus the Gamma PDF. 
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An alternative and often more accurate way to integrate a probability distribution is to use the CDF. As shown in 
Appendix A, the PDF 𝑓𝑓(𝑥𝑥) is the derivative of the CDF: 

𝑓𝑓(𝑥𝑥) =  
𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

=
𝐹𝐹(𝑥𝑥𝑢𝑢) − 𝐹𝐹(𝑥𝑥𝑙𝑙)

𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑙𝑙
 Equation 183 

Plugging this into Equation 178 yields: 

𝔼𝔼[𝑋𝑋] = � 𝑥𝑥
∞

−∞

∙ 𝑑𝑑𝑑𝑑(𝑥𝑥) Equation 184 

𝔼𝔼[𝑋𝑋] = �𝑥𝑥
𝑏𝑏

𝑎𝑎

∙ 𝑑𝑑𝑑𝑑(𝑥𝑥) ≈ �
𝑎𝑎 + 𝑏𝑏

2
� ∙ {𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎)} Equation 185 

Then, after partitioning the integration interval and ensuring ∫ 𝑑𝑑𝑑𝑑(𝑥𝑥)𝑏𝑏
𝑎𝑎 = 1, the integral is calculated as: 

𝔼𝔼[𝑋𝑋] = 𝑥𝑥𝑎𝑎1 ∙ 𝐹𝐹�𝑥𝑥𝑎𝑎1� +  ��
𝑥𝑥𝑎𝑎1 + 𝑥𝑥𝑏𝑏𝑖𝑖

2
� ∙ �𝐹𝐹�𝑥𝑥𝑏𝑏𝑖𝑖� − 𝐹𝐹�𝑥𝑥𝑎𝑎1��

𝐾𝐾

𝑖𝑖=1

+ 𝑥𝑥𝑏𝑏𝐾𝐾 ∙ �1 − 𝐹𝐹�𝑥𝑥𝑏𝑏𝐾𝐾��  Equation 186 

where 𝐾𝐾 is the number of integration bins (or subintervals); and the total number of computational steps is 𝐾𝐾 + 2. 

Example calculations are provided in Table 11. The mean is estimated as 49.99, which has less than a 0.1% error 
from the true value. As before, the accuracy will improve by increasing the number of bins. Figure 66 below shows 
that the limited number of trapezoidal bins closely matches the shape of the Gamma CDF, but there is still some error 
in the approximation.  

Table 11 - Example calculations of the trapezoid rule integration of a distribution using the CDF. 

Bin 𝒙𝒙𝒂𝒂 𝒙𝒙𝒃𝒃 𝒙𝒙� 𝒅𝒅𝒅𝒅 𝒙𝒙� ∙ 𝒅𝒅𝒅𝒅 

0.001 0.015 ← 𝑥𝑥𝑎𝑎1 ∙ 𝐹𝐹�𝑥𝑥𝑎𝑎1� 

1 14.80 34.50 24.65 0.158 3.907 

2 34.50 54.20 44.35 0.482 21.389 

3 54.20 73.89 64.04 0.281 17.987 

4 73.89 93.59 83.74 0.067 5.609 

5 93.59 113.29 103.44 0.009 0.969 

0.001 0.113 ← 𝑥𝑥𝑏𝑏5 ∙ �1 − 𝐹𝐹�𝑥𝑥𝑏𝑏5�� 

𝔼𝔼[𝑿𝑿] = � = 49.990 
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Figure 66 - Example of trapezoidal bins versus the Gamma CDF. 

The final way to integrate a probability distribution is to use the inverse CDF: 

𝔼𝔼[𝑋𝑋] = �𝐹𝐹−1(𝑝𝑝) ∙ 𝑑𝑑𝑑𝑑
1

0

  Equation 187 

where 𝐹𝐹−1(∙) is the inverse CDF, 𝐹𝐹−1(𝑝𝑝) = 𝑥𝑥; and 𝑑𝑑𝑑𝑑 = 1. In the cases where a distribution is unbounded, values 
close to 0 and 1 should be used. For example, 10−16 and 1 − 10−16 are sufficiently close to 0 and 1, respectively.  

𝔼𝔼[𝑋𝑋] = �𝐹𝐹−1(𝑝𝑝) ∙ 𝑑𝑑𝑑𝑑 ≈ �
𝐹𝐹−1(𝑎𝑎) + 𝐹𝐹−1(𝑏𝑏)

2
� ∙ (𝑏𝑏 − 𝑎𝑎)

𝑏𝑏

𝑎𝑎

  Equation 188 

Then, after partitioning the integration interval and ensuring ∫ 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎 = 1, the integral is calculated as: 

𝔼𝔼[𝑋𝑋] = 𝐹𝐹−1�𝑝𝑝𝑎𝑎1� ∙ 𝑝𝑝𝑎𝑎1 +  ��
𝐹𝐹−1�𝑝𝑝𝑎𝑎𝑖𝑖� + 𝐹𝐹−1�𝑝𝑝𝑏𝑏𝑖𝑖�

2
� ∙ �𝑝𝑝𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑎𝑎𝑖𝑖� + 𝐹𝐹−1�𝑝𝑝𝑏𝑏𝐾𝐾�

𝐾𝐾

𝑖𝑖=1

∙ �1 − 𝑝𝑝𝑏𝑏𝐾𝐾�  Equation 189 

where 𝐹𝐹(∙) is the CDF; 𝐾𝐾 is the number of integration bins (or subintervals); and the total number of computational 
steps is 𝐾𝐾 + 2.  

Example calculations are provided in Table 12 below. The mean is estimated as 52.02, which has greater than a 4% 
error from the true value. Figure 67 below shows that the trapezoidal bins do not match the inverse CDF well, 
especially on the left and righthand tails. This is because the probability axis of a distribution can be highly nonlinear.   
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Table 12 - Example calculations of the trapezoid rule integration of a distribution using the inverse CDF. 

Bin 𝒑𝒑𝒂𝒂 𝒑𝒑𝒃𝒃 𝒙𝒙� 𝒅𝒅𝒅𝒅 𝒙𝒙� ∙ 𝒅𝒅𝒅𝒅  

    0.0010 0.015 ← 𝐹𝐹−1�𝑝𝑝𝑎𝑎1� ∙ 𝑝𝑝𝑎𝑎1 

1 0.001 0.201 25.638 0.1996 3.907  

2 0.201 0.400 40.502 0.1996 21.389  

3 0.400 0.600 48.450 0.1996 17.987  

4 0.600 0.799 57.462 0.1996 5.609  

5 0.799 0.999 87.921 0.1996 0.969  

    0.0010 0.113 ← 𝐹𝐹−1�𝑝𝑝𝑏𝑏5� ∙ �1 − 𝑝𝑝𝑏𝑏5� 

𝔼𝔼[𝑿𝑿] = � = 52.019  

 

 

 
Figure 67 - Example of trapezoidal bins versus the Gamma inverse CDF. 

 

This nonlinearity can be handled by first transforming the probabilities to be approximately linear. Then, stratify the 
transformed values into 𝐾𝐾 bins and convert back to probability space. Table 13 below provides example calculations 
where the probabilities were transformed to be Normal 𝑧𝑧 variates, stratified into five bins, then converted back to 
probabilities. The mean is estimated as 50.83, which has less than a 2% error from the true value. Figure 68 below 
shows that the trapezoidal bins now more closely match the inverse CDF. As with the previous examples, the 
accuracy of the numerical integration will improve by increasing the number of bins. 
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Table 13 - Example calculations of the trapezoid rule integration of a distribution using the inverse CDF with Normal z-transformed 
probabilities. 

Bin 𝒑𝒑𝒂𝒂 𝒑𝒑𝒃𝒃 𝒙𝒙� 𝒅𝒅𝒅𝒅 𝒙𝒙� ∙ 𝒅𝒅𝒅𝒅  

    0.0010 0.015 ← 𝐹𝐹−1�𝑝𝑝𝑎𝑎1� ∙ 𝑝𝑝𝑎𝑎1 

1 0.0010 0.0319 19.903 0.0309 0.614  

2 0.0319 0.2683 32.195 0.2364 7.611  

3 0.2683 0.7317 48.978 0.4635 22.699  

4 0.7317 0.9681 70.818 0.2364 16.742  

5 0.9681 0.9990 98.176 0.0309 3.030  

    0.0010 0.113 ← 𝐹𝐹−1�𝑝𝑝𝑏𝑏5� ∙ �1 − 𝑝𝑝𝑏𝑏5� 

𝔼𝔼[𝑿𝑿] = � = 50.825  
 

 

 
Figure 68 - Example of trapezoidal bins versus the Gamma inverse CDF with Normal z-transformed probabilities. 
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Risk Analysis Example 
The previous examples provide a foundation in numerical integration techniques for risk analysis. Most existing risk 
analysis software for USACE dam and levee safety or flood risk management studies compute expected annual 
consequences in one of the three ways presented above.  

For example, USACE supported the development of the Dam Safety Risk Analysis Engine, DAMRAE©, which is a 
commonly used software tool for performing event tree calculations and risk analysis for dam safety risk assessment 
studies [59]. DAMRAE© uses a similar integration approach as the second example where numerical integration is 
performed using the trapezoidal rule with the CDF of the hazard distribution. In recent years, the RMC has used a 
Palisade’s @Risk© spreadsheet tool colloquially referred to as DamonRAE, which is named after the developer of the 
tool [60]. DamonRAE follows the second approach as well.  Likewise, the Flood Damage Reduction Analysis 
software, HEC-FDA, integrates damage exceedance curves following the second example where numerical 
integration is performed using the trapezoidal rule with the CDF.  

On the other hand, the USACE Levee Screening Tool (LST) follows the third approach where integration using the 
inverse CDF of the hazard distribution. RMC-TotalRisk also follows the third approach using the inverse CDF of the 
hazard distribution. The primary reason for using the inverse CDF approach in RMC-TotalRisk is that dependency 
between hazards can be accounted for during the integration process using the Multivariate Normal distribution (see 
Appendix F). The inverse CDF approach can have larger approximation error due to the nonlinearity of the probability 
axis, as shown above in Figure 67 and Figure 68. However, in TotalRisk, these limitations are overcome by using 
more sophisticated adaptive integration approaches, which will be discussed in the next section.  

In this section, a simple risk analysis example is provided to demonstrate the steps required to compute the risk of 
failure using the CDF integration approach. This example is designed to show how risk has typically been computed 
in the past, and to highlight some of the limitations of this approach.  

This example risk analysis is for a hypothetical dam, where the hazard function is defined by a Ln-Normal distribution 
with a mean 𝜇𝜇 = 85 and standard deviation 𝜎𝜎 = 20. In this example, the hazard is the annual max peak reservoir 
stage (ft). There is a single system response function, which is defined by a Normal distribution with a mean 𝜇𝜇 = 160 
and standard deviation 𝜎𝜎 = 15. The response function describes the probability of failure given the reservoir stage. 
Finally, the consequences (lives lost) of failure are provided as a tabular function in Table 14.  

Table 14 - Example risk analysis consequences of failure. 

Stage(ft) Lives 
60 0 
100 0 
140 10 
200 100 
250 150 

 

In most risk software, it is typical for the full range of the hazard function to be stratified for integration. As such, in this 
example the integration limits are set at the 0.999 annual exceedance probability (AEP) and the 1𝑒𝑒−6 AEP, which 
translates to reservoir stage limits of 𝑎𝑎 = 40.4 and 𝑏𝑏 = 249.4 feet, respectively. For this example, only 20 integration 
bins were evaluated.  

Figure 69 shows the inputs functions with the hazard and response distributions are plotted as CDFs. Figure 70 
shows them plotted as PDFs. From these two figures, it can be seen that non-zero probabilities of failure and non-
zero consequences do not begin to occur until around a reservoir stage of 100 ft.  Figure 71 and Figure 72 show the 
same plots with the 20 integration bins overlayed. The integral bins begin at 𝑎𝑎 = 40.4. This means that the first six 
integrations bins do not contribute to the overall risk integral. This type of uninformed and static binning was typical in 
previous USACE risk analysis software. Nearly a quarter of the integration effort is expended on parts of the function 
that do not contribute to the risk.  
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Figure 69 - Example risk analysis input functions where hazard and response functions are plotted as CDFs. 

 

 
Figure 70 - Example risk analysis input functions where hazard and response functions are plotted as PDFs. 
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Figure 71 - Example risk analysis input functions where hazard and response functions are plotted as CDFs with 20 trapezoidal 
integration bins. 

 

 

Figure 72 - Example risk analysis input functions where hazard and response functions are plotted as PDFs with 20 trapezoidal 
integration bins. 
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As shown in the Quantitative Risk Analysis chapter, the risk of failure is computed as follows: 

𝔼𝔼[𝐶𝐶𝐹𝐹] = �𝑑𝑑𝑑𝑑𝑆𝑆(𝑥𝑥) ∙ 𝐹𝐹𝑅𝑅|𝑆𝑆(𝑥𝑥) ∙ 𝐶𝐶𝐹𝐹(𝑥𝑥) ≈
𝑏𝑏

𝑎𝑎

�𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)
𝑖𝑖

∙ 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖)  Equation 190 

where 𝑃𝑃(𝑥𝑥𝑖𝑖) is the probability of the hazard level 𝑥𝑥𝑖𝑖; 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) is the conditional probability of failure given the hazard 
level 𝑥𝑥𝑖𝑖.; and 𝐶𝐶𝐹𝐹(𝑥𝑥𝑖𝑖) is the consequence of failure given the hazard level 𝑥𝑥𝑖𝑖. The risk calculations following the 
trapezoidal rule shown in Equation 186 are provided in Table 15 below. 

Table 15 - Example calculations of the trapezoid rule integration of a distribution using the CDF. 

Bin 𝒙𝒙𝒂𝒂 𝒙𝒙𝒃𝒃 𝒙𝒙� 𝒅𝒅𝒅𝒅(𝒙𝒙) =  𝑷𝑷(𝒙𝒙) 𝑷𝑷(𝑭𝑭|𝒙𝒙�) 𝑪𝑪𝑭𝑭(𝒙𝒙�) 𝑷𝑷(𝒙𝒙) ∙ 𝑷𝑷(𝑭𝑭|𝒙𝒙�) ∙ 𝑪𝑪𝑭𝑭(𝒙𝒙�) 

    1.000E-03 1.209E-14 0.00 0.000E+00 

1 40.38 50.83 45.61 1.692E-02 1.209E-14 0.00 0.000E+00 

2 50.83 61.28 56.06 8.006E-02 2.113E-12 0.00 0.000E+00 

3 61.28 71.74 66.51 1.714E-01 2.294E-10 0.00 0.000E+00 

4 71.74 82.19 76.96 2.191E-01 1.549E-08 0.00 0.000E+00 

5 82.19 92.64 87.41 1.983E-01 6.524E-07 0.00 0.000E+00 

6 92.64 103.09 97.87 1.415E-01 1.720E-05 0.00 0.000E+00 

7 103.09 113.54 108.32 8.534E-02 2.850E-04 2.08 5.059E-05 

8 113.54 124.00 118.77 4.569E-02 2.992E-03 4.69 6.415E-04 

9 124.00 134.45 129.22 2.244E-02 2.009E-02 7.31 3.294E-03 

10 134.45 144.90 139.67 1.036E-02 8.769E-02 9.92 9.008E-03 

11 144.90 155.35 150.13 4.568E-03 2.552E-01 25.19 2.936E-02 

12 155.35 165.80 160.58 1.950E-03 5.153E-01 40.87 4.107E-02 

13 165.80 176.25 171.03 8.134E-04 7.689E-01 56.54 3.537E-02 

14 176.25 186.71 181.48 3.340E-04 9.239E-01 72.22 2.229E-02 

15 186.71 197.16 191.93 1.357E-04 9.834E-01 87.90 1.173E-02 

16 197.16 207.61 202.38 5.481E-05 9.976E-01 102.38 5.599E-03 

17 207.61 218.06 212.84 2.207E-05 9.998E-01 112.84 2.490E-03 

18 218.06 228.51 223.29 8.887E-06 1.000E+00 123.29 1.096E-03 

19 228.51 238.97 233.74 3.584E-06 1.000E+00 133.74 4.793E-04 

20 238.97 249.42 244.19 1.450E-06 1.000E+00 144.19 2.091E-04 

    1.000E-06 1.000E+00 144.19 1.442E-04 

𝔼𝔼[𝑪𝑪𝑭𝑭] = � = 0.163 
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Adaptive Integration 
The challenge with static numerical integration methods, such as the trapezoidal rule presented above, is that the 
user must specify the limits of integration and the number of integration bins. If the integrand function has subregions 
with high variance, then this approach can result in large approximation errors. In addition, as the previous risk 
analysis example demonstrated, many integrand functions have significant weight in only a narrow subregion. 
Therefore, many of the integration bins can be wasted in areas of the function that do not contribute significant weight.  

Adaptive integration is a type of numerical integration method that adaptively refines the subintervals within the 
bounds of integration. Adaptive integration methods seek to concentrate the subintervals in the regions that make the 
largest contribution to the integral, overcoming the limitations of static approaches.  

RMC-TotalRisk uses two different adaptive integration approaches. The Adaptive Simpson’s Rule is used for single 
dimension integrations. The VEGAS algorithm, which is an adaptive importance sampling method, is used for 
multidimensional integrals. Both methods are described in greater detail in the following sections.  

Adaptive Simpson’s Rule 
In RMC-TotalRisk, single dimension integrals are solved using an implementation of the Adaptive Simpson’s Rule 
(ASR) method. The ASR algorithm subdivides the interval of integration in a recursive manner until a user-defined 
tolerance is achieved. The default tolerance level is 10−8.  In each subinterval, the Simpson’s rule is used to 
approximate the region under the function 𝑔𝑔(𝑥𝑥) = 𝑥𝑥 ∙ 𝑓𝑓(𝑥𝑥) as a weighted average of the trapezoidal and midpoint 
method: 

𝔼𝔼[𝑋𝑋] = �𝑔𝑔(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

≈ �𝑔𝑔(𝑎𝑎) + 4 ∙ 𝑔𝑔 �
𝑎𝑎 + 𝑏𝑏

2
� + 𝑔𝑔(𝑏𝑏)� ∙

(𝑏𝑏 − 𝑎𝑎)
6

  Equation 191 

The inputs required for this method are as follows: 

• Max Evaluations: The maximum number of integrand evaluations allowed when performing numerical 
integration. This value must be between 10,000 and 1,000,000. The default value is 1,000,000. 
 

• Max Depth: The maximum recursion depth when performing ASR integration. The default is 100.  
 

• Tolerance: The desired tolerance for the adaptive Simpson’s rule integration. The default is 10−8.  

The criterion for determining when to stop subdividing an interval is: 

1
15

∙ |𝑆𝑆(𝑎𝑎,𝑚𝑚) + 𝑆𝑆(𝑚𝑚, 𝑏𝑏) − 𝑆𝑆(𝑎𝑎, 𝑏𝑏)| ≤ 𝜖𝜖 + 𝜖𝜖 ∙ |𝑆𝑆(𝑎𝑎, 𝑏𝑏)|  Equation 192 

where [𝑎𝑎,𝑏𝑏] is the integration interval; 𝑚𝑚 = 𝑎𝑎+𝑏𝑏
2

; 𝑆𝑆(∙) is given by the Simpson’s rule evaluated at those intervals; and 𝜖𝜖 
is the error tolerance for the interval. Each subinterval is recursively subdivided and evaluated until the tolerance is 
achieved. For more details on the ASR method are provided in [61].  

Using the previous risk analysis example, the ASR method requires 333 function evaluations to reach a tolerance of 
10−8.  Figure 73 and Figure 74 show risk function plots with the ASR integration steps overlayed. The ASR method 
automatically concentrates the subintervals in the region that is contributing the most to risk, beginning at a hazard 
level of 100. The ASR method only expends minimal effort in the regions that do not contribute. By using the ASR 
method, RMC-TotalRisk can ensure a higher level of precision in the risk results with little input from the user 
required.  
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Figure 73 - Example risk analysis input functions where hazard and response functions are plotted as CDFs with the ASR 
integration bins. 

 

 
Figure 74 - Example risk analysis input functions where hazard and response functions are plotted as PDFs with the ASR 
integration bins. 
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Adaptive Importance Sampling 
Computing risk for multiple system components requires integration over a multidimensional integral. Consider a 
system with two components, where the consequences of failure from each component are additive. Following the 
general risk formula, the system risk becomes a two-dimensional integral: 

𝔼𝔼[𝐶𝐶]Ω =  � �{𝐶𝐶𝑋𝑋(𝑥𝑥) + 𝐶𝐶𝑌𝑌(𝑦𝑦)} ∙ 𝑓𝑓𝑋𝑋𝑋𝑋�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� ∙ 𝑑𝑑𝑑𝑑 ∙ 𝑑𝑑𝑑𝑑
∞

−∞

∞

−∞

  Equation 193 

where 𝑥𝑥 is the hazard level for system component 𝑋𝑋; 𝐶𝐶𝑋𝑋(𝑥𝑥) determines the consequences for the hazard level 𝑥𝑥; 𝑦𝑦 is 
the hazard level for system component 𝑌𝑌; 𝐶𝐶𝑌𝑌(𝑦𝑦) determines the consequences for the hazard level 𝑦𝑦; and 
𝑓𝑓𝑋𝑋𝑋𝑋�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� is the joint PDF of the combined system consequences occurring.  

Solving multidimensional integrals is computationally demanding. If traditional, nonadaptive numerical integration 
techniques were used, the solution would require 𝐾𝐾𝐷𝐷 iterations, where 𝐾𝐾 is the number of integration steps (or bins) 
and 𝐷𝐷 is the number of dimensions. For example, if there were 100 integration steps and 5 dimensions, the solution 
would need 10 billion iterations.  

To avoid these computational limitations, RMC-TotalRisk uses an adaptive importance sampling algorithm called 
VEGAS [62] [63]. This approach is like the ASR method previously described in that evaluation points are 
concentrated in the regions that make the largest contribution to the integral.  

Simple Monte Carlo integration can suffer from low efficiency. As the previous risk analysis example demonstrated, 
many functions of interest have significant weight in only a few regions. Importance sampling overcomes this problem 
by increasing the density of evaluation points in the key regions of interest.  

In simple Monte Carlo integration, the integral is calculated as an arithmetic mean from 𝑁𝑁 samples: 

𝔼𝔼[𝑋𝑋] = 𝜇𝜇 = � 𝑔𝑔(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

≈
1
𝑁𝑁
�𝑔𝑔(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

  Equation 194 

where 𝑔𝑔(∙) is the integrand function; and 𝑁𝑁 is the number of Monte Carlo samples. The variance of the mean 𝜇𝜇 is 
computed as: 

𝜎𝜎𝜇𝜇2 =
1
𝑁𝑁
�(𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝜇𝜇)2
𝑁𝑁

𝑖𝑖=1

  Equation 195 

With importance sampling, the integral is calculated as a weighted mean: 

𝔼𝔼[𝑋𝑋] = 𝜇𝜇 = � 𝑔𝑔(𝑥𝑥) ∙ 𝑝𝑝(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

= � �𝑔𝑔(𝑥𝑥) ∙
𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)� ∙ 𝑞𝑞

(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

≈
1
𝑁𝑁
�𝑔𝑔(𝑥𝑥𝑖𝑖) ∙

𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

𝑁𝑁

𝑖𝑖=0

  Equation 196 

where 𝑤𝑤(𝑥𝑥) = 𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)

 is the importance weight function, which leads to: 

𝔼𝔼[𝑋𝑋] = 𝜇𝜇𝐼𝐼 = � 𝑔𝑔(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
∞

−∞

≈
1
𝑁𝑁
�𝑔𝑔(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=0

∙ 𝑤𝑤(𝑥𝑥𝑖𝑖)  Equation 197 
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The variance of the mean 𝜇𝜇𝐼𝐼 is then: 

𝜎𝜎𝜇𝜇𝐼𝐼
2 =

1
𝑁𝑁
�(𝑔𝑔(𝑥𝑥𝑖𝑖) ∙ 𝑤𝑤(𝑥𝑥𝑖𝑖) − 𝜇𝜇𝐼𝐼)2
𝑁𝑁

𝑖𝑖=1

< 𝜎𝜎𝜇𝜇2 =
1
𝑁𝑁
�(𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝜇𝜇)2
𝑁𝑁

𝑖𝑖=1

  Equation 198 

Since the variance of the estimate is reduced, the importance sampling approach is a more efficient than basic Monte 
Carlo integration. Accurate results can be achieved with far fewer function evaluations. More details on importance 
sampling can be found in [34], [64], and [65]. 

The VEGAS algorithm approximates the exact risk distribution by making several warmup cycles over the integration 
region while histogramming the multidimensional integrand function 𝑔𝑔𝐷𝐷(𝑥𝑥1, 𝑥𝑥2 ⋯ , 𝑥𝑥𝐷𝐷). After each cycle, the histogram 
bins are adapted and refined, and then used to define the sampling distribution for the next cycle. Asymptotically, this 
procedure will converge to the desired distribution. To avoid the number of histogram bins growing to 𝐾𝐾𝐷𝐷, the 
probability distribution is approximated by a separable function 𝑔𝑔(𝑥𝑥1) ∙ 𝑔𝑔(𝑥𝑥2) ∙  ⋯  ∙  𝑔𝑔(𝑥𝑥𝐷𝐷) so that the number of 
histogram bins required is only 𝐾𝐾 ∙ 𝐷𝐷.  This algorithm is most efficient when the peaks of the integrand are well 
localized, which will often be the case for most dam and levee risk analyses. 

The algorithm implemented in RMC-TotalRisk has two steps. First, to establish and refine the importance sampling 
histogram, by default the routine performs five warmup cycles, each with a maximum of 1,000 ∙ 𝐷𝐷 integrand 
evaluations. For instance, if 𝐷𝐷 = 2 , by default there are 10,000 total warmup evaluations. Next, again by default, 
10,000 final integrand evaluations are performed. The solution and resulting standard error are based only on the final 
evaluations. The user can add more function evaluations to achieve a smaller standard error. The following options 
can be adjusted by the user: 

• Max Evaluations: The maximum number of integrand evaluations allowed when performing numerical 
integration. This value must be between 10,000 and 1,000,000. The default value is 1,000,000. 
 

• Warmup Cycles: The number of warmup cycles for the adaptive importance sampling method. The default is 
5 warmup cycles.  
 

• Warmup Evaluations: The number of integrand evaluations each warmup cycle. The default is 1,000 ∙ 𝐷𝐷 
warmup evaluations, where 𝐷𝐷 is the number of integrand dimensions (i.e., system components).  
 

• Final Evaluations: The final number of integrand evaluations for the adaptive importance sampling method. 
The default is 10,000 final integrand evaluations.  

 

.  
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Appendix E – Univariate Probability 
Distributions 
This appendix provides background information and mathematic details of the input probability distributions included 
in RMC-TotalRisk.  

Exponential 
The two-parameter (or shifted) Exponential distribution is a special case of the Gamma family of distributions, which 
includes the two-parameter Gamma, Pearson Type III, and Log-Pearson Type III. The Exponential distribution 
describes the time between events in a Poisson process, i.e., a process in which events occur continuously and 
independently at a constant average rate. The Exponential distribution is often used in reliability applications, where it 
can be used to model data with a constant failure rate. This distribution is useful for modeling highly positively skewed 
data that have a non-zero lower bound. 

Table 16 - Summary table for the Exponential distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  
�
−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞
 

Distribution Functions Domain 

𝑧𝑧 =  
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

 

 

𝑓𝑓(𝑥𝑥) =  1
𝛼𝛼
𝑒𝑒−(𝑧𝑧)  

 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−(𝑧𝑧)  

 

𝐹𝐹−1(𝑝𝑝) =  𝜉𝜉 − 𝛼𝛼 ln(1 − 𝑝𝑝)  

 

𝜉𝜉 ≤ 𝑥𝑥 < +∞  

 

 
 

 

 

  

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
114 

 

Gamma 
The Gamma distribution is a two-parameter, positively skewed distribution. The Exponential, Erlang, and Chi-squared 
distributions are special cases of the Gamma distribution. The Gamma distribution has applications in hydrology, 
econometrics, and other applied fields. It is a flexible distribution capable of modeling many kinds of data with a mild 
positive skew and lower bound of zero. 

There are three different parameterizations for the Gamma distribution in common use: 

1. With a scale parameter 𝜃𝜃 and a shape parameter 𝜅𝜅. 
 

2. With an inverse scale parameter 𝛽𝛽 = 1/𝜃𝜃, called a rate parameter, and a shape parameter 𝛼𝛼 = 𝜅𝜅. 
 

3. With a mean parameter 𝜇𝜇 = 𝑘𝑘𝑘𝑘 = 𝛼𝛼/𝛽𝛽 and a shape parameter 𝜅𝜅.  

RMC software uses the first parameterization, with a scale parameter 𝜃𝜃 and a shape parameter 𝜅𝜅.  

Table 17 - Summary table for the Gamma distribution. 

Parameters Support 

Scale: 𝜃𝜃 

Shape: 𝜅𝜅  
�

 0 < 𝜃𝜃 < +∞

 0 < 𝜅𝜅 < +∞
 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =  1
Γ(𝜅𝜅)𝜃𝜃𝜅𝜅

𝑥𝑥𝜅𝜅−1𝑒𝑒−
𝑥𝑥
𝜃𝜃  

where Γ(∙) is the gamma function 

 

𝐹𝐹(𝑥𝑥) = 1
Γ(𝜅𝜅)

𝛾𝛾 �𝜅𝜅, 𝑥𝑥
𝜃𝜃
�  

where 𝛾𝛾(∙) is the lower incomplete gamma 
function. 

 

 𝐹𝐹−1(∙)  has no explicit analytical form. 

 

0 < 𝑥𝑥 < +∞  
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Generalized Beta 
The Generalized Beta distribution, commonly called the four-parameter Beta distribution, is highly flexible and 
bounded in the closed interval [𝑎𝑎, 𝑐𝑐]. The PERT distribution is a transformation of the Generalized Beta. The 
Generalized Beta distribution provides flexibility to fit expert elicitations or other bounded data. 

Table 18 - Summary table for the Generalized Beta distribution. 

Parameters Support 

Shape: 𝛼𝛼 

Shape: 𝛽𝛽 

Min: 𝑎𝑎 

Max: c 

�

0 < 𝛼𝛼 < +∞

0 <  𝛽𝛽 < +∞

−∞ < 𝑎𝑎 < 𝑐𝑐 < +∞

 

 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =
(𝑥𝑥 − 𝑎𝑎)𝛼𝛼−1(𝑐𝑐 − 𝑥𝑥)𝛽𝛽−1

𝐵𝐵(𝛼𝛼,𝛽𝛽)(𝑐𝑐 − 𝑎𝑎)𝛼𝛼+𝛽𝛽−1  

where 𝐵𝐵(∙) is the beta function. 

 

𝐹𝐹(𝑥𝑥) = 𝐼𝐼(𝛼𝛼,𝛽𝛽, 𝑧𝑧),      𝑧𝑧 = 𝑥𝑥−𝑎𝑎
𝑐𝑐−𝑎𝑎

 

where 𝐼𝐼(∙) is the incomplete beta function. 

 

𝐹𝐹−1(𝑝𝑝) = 𝐼𝐼−1(𝛼𝛼,𝛽𝛽,𝑝𝑝)(𝑐𝑐 − 𝑎𝑎) + 𝑎𝑎 

where 𝐼𝐼−1(∙) is the inverse incomplete beta 
function. 

 

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑐𝑐  
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Generalized Extreme Value 
The Generalized Extreme Value (GEV) distribution is a three-parameter distribution that subsumes the three extreme-
value distributions: Gumbel (EVI), Fréchet (EVII), and Weibull (EVIII). The shape parameter 𝜅𝜅 determines which sub-
distribution the GEV represents. The extreme value theorem states that the GEV distribution is the limit distribution of 
maxima of a sequence of independent and identically distributed random values. GEV is used for hydrologic 
frequency analysis, insurance, and financial risks. 

RMC software uses Hosking’s parameterization [17], in which a GEV with a negative shape parameter 𝜅𝜅 has no upper 
bound, and a GEV with a positive 𝜅𝜅 has an upper bound. Other sources adopt the opposite convention, where a 
negative shape parameter implies an upper bound. 

There are several three parameter distributions available in RMC software. Each have special cases when the shape 
parameter is equal to zero. To ensure numerical stability, RMC software assumes the shape parameter is sufficiently 
close to zero when the absolute value of the shape parameter is less than or equal to 10−6. This is consistent with 
other distribution fitting and frequency analysis software, such as the ‘lmom’ and ‘nsRFA’ packages in R [66] [67].  

Table 19 - Summary table for the Generalized Extreme Value distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  

Shape: 𝜅𝜅 

�

−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞

−∞ < 𝜅𝜅 < +∞

 

Distribution Functions Domain 

𝑧𝑧 = �
−

1
𝜅𝜅

ln �1 − 𝜅𝜅 �
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

�� , 𝜅𝜅 ≠ 0

𝑥𝑥 − 𝜉𝜉
𝛼𝛼

, 𝜅𝜅 = 0
 

 

𝑓𝑓(𝑥𝑥) =  
1
𝛼𝛼
𝑒𝑒−(1−𝜅𝜅)𝑧𝑧−𝑒𝑒−𝑧𝑧 

 

𝐹𝐹(𝑥𝑥) = 𝑒𝑒−𝑒𝑒−𝑧𝑧  

 

𝐹𝐹−1(𝑝𝑝) = �
𝜉𝜉 +

𝛼𝛼
𝜅𝜅

{1 − (− ln(𝑝𝑝))𝜅𝜅}, 𝜅𝜅 ≠ 0

𝜉𝜉 − 𝛼𝛼 ln(− ln(𝑝𝑝)) , 𝜅𝜅 = 0
 

 

 

⎩
⎪
⎨

⎪
⎧𝜉𝜉 +

𝛼𝛼
𝜅𝜅
≤ 𝑥𝑥 < +∞, 𝜅𝜅 < 0

−∞ < 𝑥𝑥 < +∞, 𝜅𝜅 = 0

−∞ < 𝑥𝑥 ≤ 𝜉𝜉 +
𝛼𝛼
𝜅𝜅

, 𝜅𝜅 > 0
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Generalized Logistic 
The Generalized Logistic (GLO) distribution is a heavy-tailed, three-parameter distribution. The GLO distribution has 
been used to fit values of extremes, such as stock return fluctuations and sea levels. It has been used extensively for 
modeling annual rainfall maxima, and for flood frequency analysis.  

Table 20 - Summary table for the Generalized Logistic distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  

Shape: 𝜅𝜅 

�

−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞

−∞ < 𝜅𝜅 < +∞

 

Distribution Functions Domain 

𝑧𝑧 = �
−

1
𝜅𝜅

ln �1 − 𝜅𝜅 �
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

�� , 𝜅𝜅 ≠ 0

𝑥𝑥 − 𝜉𝜉
𝛼𝛼

, 𝜅𝜅 = 0
 

 

𝑓𝑓(𝑥𝑥) =  
1
𝛼𝛼
𝑒𝑒−(1−𝜅𝜅)𝑧𝑧(1 + 𝑒𝑒−𝑧𝑧)−2 

 

𝐹𝐹(𝑥𝑥) = (1 + 𝑒𝑒−𝑧𝑧)−1 

 

𝐹𝐹−1(𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧𝜉𝜉 +

𝛼𝛼
𝜅𝜅
�1 − �

1 − 𝑝𝑝
𝑝𝑝

�
𝜅𝜅

� , 𝜅𝜅 ≠ 0

𝜉𝜉 − 𝛼𝛼 ln �
1 − 𝑝𝑝
𝑝𝑝

� , 𝜅𝜅 = 0
 

 

⎩
⎪
⎨

⎪
⎧𝜉𝜉 +

𝛼𝛼
𝜅𝜅
≤ 𝑥𝑥 < +∞, 𝜅𝜅 < 0

−∞ < 𝑥𝑥 < +∞, 𝜅𝜅 = 0

−∞ < 𝑥𝑥 ≤ 𝜉𝜉 +
𝛼𝛼
𝜅𝜅

, 𝜅𝜅 > 0
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Generalized Normal 
The Generalized Normal (GNO) distribution is a flexible three-parameter distribution that has been used extensively 
for modeling annual rainfall maxima, and for flood frequency analysis. The GNO contains three special cases: 1) a 
three-parameter log-normal distribution with finite lower bound and positive skewness (𝜅𝜅 < 0); 2) a two-parameter 
normal distribution (𝜅𝜅 = 0); and 3) a reverse three-parameter log-normal distribution with a finite upper bound and 
negative skewness (𝜅𝜅 > 0). 

Table 21 - Summary table for the Generalized Normal distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  

Shape: 𝜅𝜅 

�

−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞

−∞ < 𝜅𝜅 < +∞

 

Distribution Functions Domain 

𝑧𝑧 = �
−

1
𝜅𝜅

ln �1 − 𝜅𝜅 �
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

�� , 𝜅𝜅 ≠ 0

𝑥𝑥 − 𝜉𝜉
𝛼𝛼

, 𝜅𝜅 = 0
 

 

𝑓𝑓(𝑥𝑥) =  
𝑒𝑒�𝜅𝜅𝜅𝜅−

𝑧𝑧2
2 �

𝛼𝛼√2𝜋𝜋
 

 

𝐹𝐹(𝑥𝑥) = Φ(𝑧𝑧) 

where Φ(∙) is the Normal CDF. 

 

𝐹𝐹−1(𝑝𝑝) = �
𝜉𝜉 −

𝛼𝛼
𝜅𝜅
�𝑒𝑒−𝜅𝜅∙Φ−1(𝑝𝑝) − 1�, 𝜅𝜅 ≠ 0

𝜉𝜉 + 𝛼𝛼 ∙ Φ−1(𝑝𝑝), 𝜅𝜅 = 0
 

where Φ−1 is the Normal inverse CDF. 

 

⎩
⎪
⎨

⎪
⎧𝜉𝜉 +

𝛼𝛼
𝜅𝜅
≤ 𝑥𝑥 < +∞, 𝜅𝜅 < 0

−∞ < 𝑥𝑥 < +∞, 𝜅𝜅 = 0

−∞ < 𝑥𝑥 ≤ 𝜉𝜉 +
𝛼𝛼
𝜅𝜅

, 𝜅𝜅 > 0
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Generalized Pareto 
The Generalized Pareto (GPA) distribution is a three-parameter distribution with a fixed lower bound. The GPA is 
upper bounded when the shape parameter is positive. When κ is zero, the distribution reduces to a shifted 
Exponential distribution. The GPA distribution is most often used with peaks-over-threshold data. Hydrologic 
frequency analysis uses the GPA in cases where rainfall or flow maxima exceed a specified threshold.   

Table 22 - Summary table for the Generalized Pareto distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  

Shape: 𝜅𝜅 

�

−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞

−∞ < 𝜅𝜅 < +∞

 

Distribution Functions Domain 

𝑧𝑧 = �
−

1
𝜅𝜅

ln �1 − 𝜅𝜅 �
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

�� , 𝜅𝜅 ≠ 0

𝑥𝑥 − 𝜉𝜉
𝛼𝛼

, 𝜅𝜅 = 0
 

 

𝑓𝑓(𝑥𝑥) =  
1
𝛼𝛼
𝑒𝑒−(1−𝜅𝜅)𝑧𝑧 

 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝑧𝑧 

 

𝐹𝐹−1(𝑝𝑝) = �
𝜉𝜉 +

𝛼𝛼
𝜅𝜅

{1 − (1 − 𝑝𝑝)𝜅𝜅}, 𝜅𝜅 ≠ 0

𝜉𝜉 − 𝛼𝛼 ln(1 − 𝑝𝑝) , 𝜅𝜅 = 0
 

 

�
𝜉𝜉 ≤ 𝑥𝑥 < +∞, 𝜅𝜅 ≤ 0

𝜉𝜉 ≤ 𝑥𝑥 ≤ 𝜉𝜉 +
𝛼𝛼
𝜅𝜅

, 𝜅𝜅 > 0 
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Gumbel 
The Gumbel, or Extreme Value Type-I (EVI) distribution, is a two-parameter distribution with a fixed positive skewness 
of ≈1.14. The Gumbel distribution is used to describe the maximum (or minimum) of a sample and has seen 
widespread use in hydrologic frequency analysis. The Gumbel distribution is a particular case of the Generalized 
Extreme Value (GEV) distribution when the GEV shape parameter is zero. The Gumbel distribution is also used for a 
probability plotting scale because it exaggerates the extreme tails of the data. 

Table 23 - Summary table for the Gumbel distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  
�
−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞
 

Distribution Functions Domain 

𝑧𝑧 =  
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

 

 

𝑓𝑓(𝑥𝑥) =  1
𝛼𝛼
𝑒𝑒−(𝑧𝑧+𝑒𝑒−𝑧𝑧)  

 

𝐹𝐹(𝑥𝑥) = 𝑒𝑒−𝑒𝑒−𝑧𝑧  

 

𝐹𝐹−1(𝑝𝑝) = 𝜉𝜉 − 𝛼𝛼 ln(− ln(𝑝𝑝))  

 

−∞ < 𝑥𝑥 < +∞  
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Kappa-4 
The Kappa-4 (K4) distribution is a flexible four-parameter distribution that is predominately used for regional rainfall-
frequency analysis [17]. The K4 special cases include the Generalized Logistic (ℎ = −1), Generalized Extreme Value 
(ℎ = 0), Generalized Pareto (ℎ = 1), Logistic (𝜅𝜅 = 0,ℎ = −1), Gumbel (𝜅𝜅 = 0, ℎ = 0), Exponential   (𝜅𝜅 = 0,ℎ = 1) 
and Uniform (𝜅𝜅 = 1,ℎ = 1) distributions.  

 
Table 24 - Summary table for the Kappa-4 distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  

Shape: 𝜅𝜅 

Shape: ℎ ⎩
⎪
⎨

⎪
⎧
−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞

−∞ < 𝜅𝜅 < +∞

−∞ < ℎ < +∞

 

Distribution Functions Domain 

 

𝑓𝑓(𝑥𝑥) =  
1
𝛼𝛼
�1 − 𝜅𝜅 �

𝑥𝑥 − 𝜉𝜉
𝛼𝛼

��
1
𝜅𝜅−1

{𝐹𝐹(𝑥𝑥)}1−ℎ 

 

𝐹𝐹(𝑥𝑥) = �1 − ℎ �1 − 𝜅𝜅 �
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

��
1
𝜅𝜅
�

1
ℎ

 

 

𝐹𝐹−1(𝑝𝑝) = 𝜉𝜉 +
𝛼𝛼
𝜅𝜅
�1 − �

1 − 𝑝𝑝ℎ

ℎ
�
𝜅𝜅

� 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑥𝑥 < +∞, 𝜅𝜅 ≤ 0

𝑥𝑥 ≤ 𝜉𝜉 +
𝛼𝛼
𝜅𝜅

, 𝜅𝜅 > 0

𝜉𝜉 +
𝛼𝛼
𝜅𝜅
≤ 𝑥𝑥, ℎ ≤ 0, 𝜅𝜅 < 0

−∞ < 𝑥𝑥, ℎ ≤ 0, 𝜅𝜅 ≥ 0

𝜉𝜉 +
𝛼𝛼
𝜅𝜅

(1 − ℎ−𝜅𝜅) ≤ 𝑥𝑥, ℎ > 0
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Logistic 
The Logistic distribution is a two-parameter, symmetric distribution with heavier tails (higher kurtosis) than the Normal 
distribution. The Logistic distribution has applications in hydrology for long duration discharge or rainfall, such as 
monthly or yearly totals. The most common application is in logistic regression where the errors follow a Logistic 
distribution. 

Table 25 - Summary table for the Logistic distribution. 

Parameters Support 

Location: 𝜉𝜉 

Scale: 𝛼𝛼  
�
−∞ < 𝜉𝜉 < +∞

    0 < 𝛼𝛼 < +∞
 

Distribution Functions Domain 

𝑧𝑧 =  
𝑥𝑥 − 𝜉𝜉
𝛼𝛼

 

 

𝑓𝑓(𝑥𝑥) =  1
𝛼𝛼
𝑒𝑒−𝑧𝑧(1 + 𝑒𝑒−𝑧𝑧)−2  

 

𝐹𝐹(𝑥𝑥) = (1 + 𝑒𝑒−𝑧𝑧)−1  

 

𝐹𝐹−1(𝑝𝑝) =  𝜉𝜉 + 𝛼𝛼 ln � 𝑝𝑝
1−𝑝𝑝

�  

 

−∞ < 𝑥𝑥 < +∞  
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Log-Normal 
The log-Normal distribution is a two-parameter positively skewed distribution that describes a random variable whose 
logarithm is Normally distributed. The central limit theorem states that a log-Normal process arises from the 
multiplicative product of many independent random variables, each of which is positive. In hydrology, the log-Normal 
distribution is used for frequency analysis of annual maximum discharge. In reliability analysis, it is often used to 
model times to repair a system. 

RMC software contains two log-Normal distributions. The first, named “Ln-Normal” is based on the natural logarithm, 
or log base e. This distribution is parameterized using real-space moments to be more intuitive for multi-disciplinary 
users of the software. The other distribution, named “Log-Normal” uses log base 10 and is parameterized using log10 
moments, which is consistent with typical practice in hydrologic frequency analysis. Both log-Normal distributions are 
functionally identical and will produce the same statistical inference. 

Table 26 - Summary table for the Log-Normal distribution. 

Parameters Support 

Location: 𝜇𝜇 

Scale: 𝜎𝜎  

Conversion from real-space to Ln-space: 

𝜇𝜇 = ln�
𝜇𝜇02

�𝜇𝜇02 + 𝜎𝜎02
� 

𝜎𝜎 = �ln�1 +
𝜎𝜎02

𝜇𝜇02
� 

 

�
−∞ < 𝜇𝜇 < +∞

    0 < 𝜎𝜎 < +∞
 

Distribution Functions Domain 

𝑧𝑧 =  
ln 𝑥𝑥 − 𝜇𝜇

𝜎𝜎
 

 

𝑓𝑓(𝑥𝑥) =  1
𝑥𝑥𝑥𝑥√2𝜋𝜋

𝑒𝑒−
1
2𝑧𝑧

2
  

 

𝐹𝐹(𝑥𝑥) = 1
2
�1 + erf � 1

√2
𝑧𝑧��  

where erf is the error function. 

 

𝐹𝐹−1(𝑝𝑝) =  𝑒𝑒𝜇𝜇+𝜎𝜎√2erf−1(2𝑝𝑝−1)  

where erf−1 is the inverse error function. 

 

−∞ < 𝑥𝑥 < +∞  
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Log-Pearson Type III 
The log-Pearson Type III (LPIII) distribution is a flexible three-parameter distribution that describes a random variable 
whose logarithm is PIII distributed. The LPIII distribution was originally used to model annual maximum flood flows in 
the United States [68]. 

In RMC software, the LPIII uses log base 10 and is parameterized using log10 central moments of the distribution 
mean (𝜇𝜇), standard deviation (𝜎𝜎), and skewness (𝛾𝛾). The true parameters (location, scale, and shape) are computed 
from the specified moments. This is done because the moments of the distribution are more intuitively defined by end-
users familiar with Bulletin 17B [69] and Bulletin 17C [70]. RMC software uses the same parameterization as [17], with 
the underlying location parameter ξ, the scale parameter β, and the shape parameter α. 

Table 27 - Summary table for the Log-Pearson Type III distribution. 

Parameters Support 

Location: 𝜉𝜉 = 𝜇𝜇 − 2𝜎𝜎
𝛾𝛾

  

Scale: 𝛽𝛽 = 1
2
𝜎𝜎𝜎𝜎  

Shape: 𝛼𝛼 = 4
𝛾𝛾2

 

�

−∞ < 𝜇𝜇 < +∞

    0 < 𝜎𝜎 < +∞

−∞ < 𝛾𝛾 < +∞

 

The method of maximum likelihood requires that 
−2 ≤ 𝛾𝛾 ≤ +2 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧𝑔𝑔(log10(𝜉𝜉 − 𝑥𝑥) |𝛽𝛽,𝛼𝛼) �

𝐾𝐾
𝑥𝑥
� , 𝛾𝛾 < 0

𝜙𝜙(log10(𝑥𝑥) |𝜇𝜇,𝜎𝜎) �
𝐾𝐾
𝑥𝑥
� , 𝛾𝛾 = 0

𝑔𝑔(log10(𝑥𝑥 − 𝜉𝜉) |𝛽𝛽,𝛼𝛼) �
𝐾𝐾
𝑥𝑥
� , 𝛾𝛾 > 0

 

where 𝑔𝑔(∙) is the Gamma PDF; and 𝜙𝜙(∙) is the 
Normal PDF; and 𝐾𝐾 = log10 𝑒𝑒. 

 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

1 − 𝐺𝐺(log10(𝜉𝜉 − 𝑥𝑥) |𝛽𝛽,𝛼𝛼), 𝛾𝛾 < 0

Φ(log10(𝑥𝑥) |𝜇𝜇,𝜎𝜎), 𝛾𝛾 = 0

𝐺𝐺(log10(𝑥𝑥 − 𝜉𝜉) |𝛽𝛽,𝛼𝛼), 𝛾𝛾 > 0

 

where 𝐺𝐺(∙) is the Gamma CDF; and Φ(∙) is the 
Normal CDF. 

 

𝐹𝐹−1(𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧𝑒𝑒

�𝜉𝜉−𝐺𝐺−1(1−𝑝𝑝|𝛽𝛽,𝛼𝛼)� 𝐾𝐾⁄ , 𝛾𝛾 < 0

𝑒𝑒Φ−1(𝑝𝑝|𝜇𝜇,𝜎𝜎) 𝐾𝐾⁄ , 𝛾𝛾 = 0

𝑒𝑒�𝜉𝜉+𝐺𝐺
−1(𝑝𝑝|𝛽𝛽,𝛼𝛼)� 𝐾𝐾⁄ , 𝛾𝛾 > 0

 

where 𝐺𝐺−1 is the Gamma inverse CDF; and Φ−1 is 
the Normal inverse CDF. 

 

�

0 < 𝑥𝑥 ≤ 𝜉𝜉, 𝛾𝛾 < 0

0 < 𝑥𝑥 < +∞, 𝛾𝛾 = 0

𝜉𝜉 ≤ 𝑥𝑥 < +∞, 𝛾𝛾 > 0

 

 

 

 

  

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
125 

 

Normal 
The Normal (or Gaussian) distribution is a very widely used two-parameter probability distribution. The Normal 
distribution is fundamental to most statistical modeling because of the central limit theorem, which states that the 
mean of independent random variables trends towards a Normal distribution, even if the original variables themselves 
are not Normally distributed. The Normal distribution fits many natural phenomena, such as body heights, blood 
pressure, measurement error, and annual rainfall. 

Table 28 - Summary table for the Normal distribution. 

Parameters Support 

Location: 𝜇𝜇 

Scale: 𝜎𝜎  
�
−∞ < 𝜇𝜇 < +∞

    0 < 𝜎𝜎 < +∞
 

Distribution Functions Domain 

𝑧𝑧 =  
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

 

 

𝑓𝑓(𝑥𝑥) =  1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2𝑧𝑧

2
  

 

𝐹𝐹(𝑥𝑥) = 1
2
�1 + erf � 1

√2
𝑧𝑧��  

where erf is the error function. 

 

𝐹𝐹−1(𝑝𝑝) =  𝜇𝜇 + 𝜎𝜎√2 erf−1(2𝑝𝑝 − 1)  

where erf−1 is the inverse error function. 

 

−∞ < 𝑥𝑥 < +∞  
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Nonparametric 
In many cases, probability distributions for the hazard and system response will be nonparametric, either based on 
empirical data, simulation results, or expert elicitation. The nonparametric distributions functions are based on linear 
interpolation as shown below. There is often a need to transform the 𝑥𝑥 values or probability values to improve the 
accuracy of the linear interpolation. For example, the log-linear interpolation is the same as linear interpolation, only it 
takes place over the logarithm of the 𝑥𝑥 values.  

Table 29 - Summary table for the Nonparametric distribution. 

Parameters Support 

Values {𝑥𝑥} = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} 

Probabilities {𝑝𝑝} = �𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛�  
�
−∞ < 𝑥𝑥𝑖𝑖 < +∞

    0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1
 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =  𝑝𝑝𝑖𝑖+1−𝑝𝑝𝑖𝑖
𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖

  

 

𝐹𝐹(𝑥𝑥) = 𝑝𝑝𝑖𝑖 + (𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖) �
𝑥𝑥−𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖
�  

 

𝐹𝐹−1(𝑝𝑝) =  𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) �
𝑝𝑝−𝑝𝑝𝑖𝑖

𝑝𝑝𝑖𝑖+1−𝑝𝑝𝑖𝑖
�  

 

𝑥𝑥1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑛𝑛  

The {𝑥𝑥} values and non-exceedance probabilities 
{𝑝𝑝} must be sorted in ascending order 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑖𝑖+1 
and 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖+1. 
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Pearson Type III 
The Pearson Type III (PIII) distribution is a three-parameter distribution that is widely used in hydrologic frequency 
analysis. It has also been used to model the probability of wind speed and rainfall intensity. The PIII distribution is 
deduced from the two-parameter gamma distribution and converges to a Normal distribution as its skewness (𝛾𝛾) 
approaches zero.  

In RMC software, the PIII distribution is parameterized using the central moments of the distribution mean (𝜇𝜇), 
standard deviation (𝜎𝜎), and skewness (𝛾𝛾). The true parameters (location, scale, and shape) are computed from the 
specified moments. This is done because the moments of the distribution are more intuitively defined by end-users 
familiar with Bulletin 17B [69] and Bulletin 17C [70]. RMC software uses the same parameterization as [17], with the 
underlying location parameter ξ, the scale parameter β, and the shape parameter α. 

Table 30 - Summary table for the Pearson Type III distribution. 

Parameters Support 

Location: 𝜉𝜉 = 𝜇𝜇 − 2𝜎𝜎
𝛾𝛾

  

Scale: 𝛽𝛽 = 1
2
𝜎𝜎𝜎𝜎  

Shape: 𝛼𝛼 = 4
𝛾𝛾2

 

�

−∞ < 𝜇𝜇 < +∞

    0 < 𝜎𝜎 < +∞

−∞ < 𝛾𝛾 < +∞

 

The method of maximum likelihood requires that 
−2 ≤ 𝛾𝛾 ≤ +2 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧
𝑔𝑔(𝜉𝜉 − 𝑥𝑥|𝛽𝛽,𝛼𝛼), 𝛾𝛾 < 0

𝜙𝜙(𝑥𝑥|𝜇𝜇,𝜎𝜎), 𝛾𝛾 = 0

𝑔𝑔(𝑥𝑥 − 𝜉𝜉|𝛽𝛽,𝛼𝛼), 𝛾𝛾 > 0

 

where 𝑔𝑔(∙) is the Gamma PDF; and 𝜙𝜙(∙) is the 
Normal PDF. 

 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

1 − 𝐺𝐺(𝜉𝜉 − 𝑥𝑥|𝛽𝛽,𝛼𝛼), 𝛾𝛾 < 0

Φ(𝑥𝑥|𝜇𝜇,𝜎𝜎), 𝛾𝛾 = 0

𝐺𝐺(𝑥𝑥 − 𝜉𝜉|𝛽𝛽,𝛼𝛼), 𝛾𝛾 > 0

 

where 𝐺𝐺(∙) is the Gamma CDF; and Φ(∙) is the 
Normal CDF. 

 

𝐹𝐹−1(𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧𝜉𝜉 − 𝐺𝐺−1(1 − 𝑝𝑝|𝛽𝛽,𝛼𝛼), 𝛾𝛾 < 0

Φ−1(𝑝𝑝|𝜇𝜇,𝜎𝜎), 𝛾𝛾 = 0

𝜉𝜉 + 𝐺𝐺−1(𝑝𝑝|𝛽𝛽,𝛼𝛼), 𝛾𝛾 > 0

 

where 𝐺𝐺−1 is the Gamma inverse CDF; and Φ−1 is 
the Normal inverse CDF. 

 

�

0 < 𝑥𝑥 ≤ 𝜉𝜉, 𝛾𝛾 < 0

0 < 𝑥𝑥 < +∞, 𝛾𝛾 = 0

𝜉𝜉 ≤ 𝑥𝑥 < +∞, 𝛾𝛾 > 0
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PERT 
The PERT distribution is a continuous distribution with a closed interval [𝑎𝑎, 𝑐𝑐] and with a mode of 𝑏𝑏. It is commonly 
used with expert elicitation when the range is known and there is a reasonable estimate for the most likely value. The 
PERT distribution is widely used in project management and event tree analysis.  

This distribution was first used for estimating project task durations using the program evaluation and review 
technique, which is where the distribution gets its name. The PERT is a transformation of the Generalized Beta (four-
parameter Beta) distribution.  

The PERT can also be defined based on user-defined 5th, 50th and 95th percentiles (in real-space or Normal 𝑧𝑧-space). 
The underlying parameters are solved to minimize the sum of squared errors between the estimated and user-defined 
percentiles. It should be noted that there might be deviations between the estimated and user-defined percentiles due 
to convergence limitations of the underlying numerical optimization method.  

Table 31 - Summary table for the PERT distribution. 

Parameters Support 

Min: 𝑎𝑎 

Mode: 𝑏𝑏  

Max: c 

−∞ < 𝑎𝑎 < 𝑏𝑏 < 𝑐𝑐 < +∞ 

Distribution Functions Domain 

𝜇𝜇 =  
𝑎𝑎 + 4𝑏𝑏 + 𝑐𝑐

6
 

 

𝛼𝛼 =
(𝜇𝜇 − 𝑎𝑎)(2𝑏𝑏 − 𝑎𝑎 − 𝑐𝑐)

(𝑏𝑏 − 𝜇𝜇)(𝑐𝑐 − 𝑎𝑎)  

 

𝛽𝛽 =
𝛼𝛼(𝑐𝑐 − 𝜇𝜇)
(𝜇𝜇 − 𝑎𝑎)  

 

𝑓𝑓(𝑥𝑥) =
(𝑥𝑥 − 𝑎𝑎)𝛼𝛼−1(𝑐𝑐 − 𝑥𝑥)𝛽𝛽−1

𝐵𝐵(𝛼𝛼,𝛽𝛽)(𝑐𝑐 − 𝑎𝑎)𝛼𝛼+𝛽𝛽−1  

where 𝐵𝐵(∙) is the beta function. 

 

𝐹𝐹(𝑥𝑥) = 𝐼𝐼(𝛼𝛼,𝛽𝛽, 𝑧𝑧),      𝑧𝑧 = 𝑥𝑥−𝑎𝑎
𝑐𝑐−𝑎𝑎

 

where 𝐼𝐼(∙) is the incomplete beta function. 

 

𝐹𝐹−1(𝑝𝑝) = 𝐼𝐼−1(𝛼𝛼,𝛽𝛽,𝑝𝑝)(𝑐𝑐 − 𝑎𝑎) + 𝑎𝑎 

where 𝐼𝐼−1(∙) is the inverse incomplete beta 
function. 

 

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑐𝑐  
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Triangular 
The triangular distribution is a continuous distribution with a closed interval [𝑎𝑎, 𝑐𝑐] and with a mode of 𝑏𝑏. The triangular 
distribution is commonly used with expert elicitation when the range is known and there is a reasonable estimate for 
the most likely value. The triangular distribution, along with the PERT distribution, is widely used in project 
management and event tree analysis.  

Table 32 - Summary table for the Triangular distribution. 

Parameters Support 

Min: 𝑎𝑎 

Mode: 𝑏𝑏  

Max: c 

−∞ < 𝑎𝑎 ≤ 𝑏𝑏 ≤ 𝑐𝑐 < +∞ 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

2(𝑥𝑥 − 𝑎𝑎)
(𝑐𝑐 − 𝑎𝑎)(𝑏𝑏 − 𝑎𝑎) , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

2(𝑐𝑐 − 𝑥𝑥)
(𝑐𝑐 − 𝑎𝑎)(𝑐𝑐 − 𝑏𝑏) , 𝑏𝑏 < 𝑥𝑥 ≤ 𝑐𝑐

 

 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

(𝑥𝑥 − 𝑎𝑎)2

(𝑐𝑐 − 𝑎𝑎)(𝑏𝑏 − 𝑎𝑎) , 𝑎𝑎 < 𝑥𝑥 ≤ 𝑏𝑏

1 −
(𝑐𝑐 − 𝑥𝑥)2

(𝑐𝑐 − 𝑎𝑎)(𝑐𝑐 − 𝑏𝑏) , 𝑏𝑏 < 𝑥𝑥 < 𝑐𝑐

 

  

𝐹𝐹−1(𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧ 𝑎𝑎 + �𝑝𝑝(𝑐𝑐 − 𝑎𝑎)(𝑏𝑏 − 𝑎𝑎), 𝑝𝑝 <

𝑏𝑏 − 𝑎𝑎
𝑐𝑐 − 𝑎𝑎

𝑐𝑐 − �(1 − 𝑝𝑝)(𝑐𝑐 − 𝑎𝑎)(𝑐𝑐 − 𝑏𝑏), 𝑝𝑝 ≥
𝑏𝑏 − 𝑎𝑎
𝑐𝑐 − 𝑎𝑎

 

 

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑐𝑐  
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Truncated Normal 
The Truncated Normal distribution is a Normal distribution bounded by the closed interval [𝑎𝑎, 𝑏𝑏]. The Truncated 
Normal distribution has wide applications in statistics, econometrics, and risk analysis. This distribution provides 
flexibility to fit expert elicitations like the Generalized Beta distribution.  

Table 33 - Summary table for the Truncated Normal distribution. 

Parameters Support 

Location: 𝜇𝜇 

Scale: 𝜎𝜎 

Min: 𝑎𝑎 

Max: 𝑏𝑏 

�

−∞ < 𝜇𝜇 < +∞

    0 < 𝜎𝜎 < +∞

−∞ < 𝑎𝑎 < 𝑏𝑏 < +∞

 

 

Distribution Functions Domain 

𝜉𝜉 =  
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

, 𝛼𝛼 =
𝑎𝑎 − 𝜇𝜇
𝜎𝜎

, 𝛽𝛽 =
𝑏𝑏 − 𝜇𝜇
𝜎𝜎

 

 

𝑍𝑍 =  Φ(𝛼𝛼) −Φ(𝛽𝛽) 

 

𝑓𝑓(𝑥𝑥) =  
𝜙𝜙(𝜉𝜉)
𝜎𝜎𝜎𝜎

 

where 𝜙𝜙(∙) is the Normal PDF; and Φ(∙) is the 
Normal CDF. 

 

𝐹𝐹(𝑥𝑥) = Φ(𝜉𝜉)−Φ(𝛼𝛼)
𝑍𝑍

  

 

𝐹𝐹−1(𝑝𝑝) =  𝜇𝜇 + 𝜎𝜎Φ−1(Φ(𝛼𝛼) + 𝑝𝑝𝑝𝑝)  

where Φ−1 is the Normal inverse CDF. 

 

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏  
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Uniform 
The uniform distribution is a symmetrical distribution that assigns equal probability density to all outcomes in the 
closed interval [𝑎𝑎, 𝑏𝑏]. The uniform distribution is widely used for generating random numbers for a Monte Carlo 
simulation. It is also used in Bayesian analysis for a default, uninformative prior distribution. It can be used for expert 
elicitation when no information about the mode exists, but the range is known.  

Table 34 - Summary table for the Uniform distribution. 

Parameters Support 

Min: 𝑎𝑎 

Max: 𝑏𝑏  

−∞ < 𝑎𝑎 < 𝑏𝑏 < +∞ 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =  1
𝑏𝑏−𝑎𝑎

  

 

𝐹𝐹(𝑥𝑥) = 𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

  

 

𝐹𝐹−1(𝑝𝑝) = 𝑎𝑎 + 𝑝𝑝(𝑏𝑏 − 𝑎𝑎)  

 

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏  
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Weibull 
The Weibull distribution is a two-parameter distribution commonly used in reliability analysis. It is related to several 
other probability distributions. In particular, the Weibull distribution interpolates between the exponential distribution 
(for 𝜅𝜅 = 1) and the Rayleigh distribution (when 𝜅𝜅 = 2). If the quantity 𝑥𝑥 is the “time to failure”, the Weibull distribution 
gives the distribution for which the failure rate is proportional to a power of time. 

Table 35 - Summary table for the Weibull distribution. 

Parameters Support 

Scale: 𝜆𝜆 

Shape: 𝜅𝜅  
�

 0 < 𝜆𝜆 < +∞

 0 < 𝜅𝜅 < +∞
 

Distribution Functions Domain 

𝑓𝑓(𝑥𝑥) =  𝜅𝜅
𝜆𝜆
�𝑥𝑥
𝜆𝜆
�
𝜅𝜅−1

𝑒𝑒−
𝑥𝑥
𝜆𝜆
𝜅𝜅

  

 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−
𝑥𝑥
𝜆𝜆
𝜅𝜅

  

 

𝐹𝐹−1(𝑝𝑝) =  𝜆𝜆 ln � 1
1−𝑝𝑝

�
1
𝜅𝜅 

 

0 ≤ 𝑥𝑥 < +∞ 
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Appendix F – Multivariate Normal Distribution 
In RMC-TotalRisk, the dependency between failure modes and system components is modeled with the Multivariate 
Normal (MVN) distribution, which is often referred to as a Gaussian Copula. The following details on the MVN are 
taken from [16] and [71]. Whether a random vector 𝒙𝒙 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑘𝑘)𝑇𝑇 is normally distributed or not, it has a mean 
vector: 

𝝁𝝁 = 𝔼𝔼[𝒙𝒙] =  (𝔼𝔼[𝑥𝑥1],⋯ ,𝔼𝔼[𝑥𝑥𝑘𝑘])𝑇𝑇   Equation 199 

and a 𝑘𝑘 ×  𝑘𝑘 covariance matrix: 

𝚺𝚺 = 𝔼𝔼[(𝒙𝒙 − 𝝁𝝁)(𝒙𝒙 − 𝝁𝝁)𝑇𝑇]  Equation 200 

where (∙)𝑇𝑇 represents the transposed vector, or column vector. The off-diagonal elements in 𝚺𝚺 are the covariances, 
and the diagonal elements are the variances.  

𝚺𝚺𝑖𝑖𝑖𝑖 = cov�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝜎𝜎𝑖𝑖𝑖𝑖    Equation 201 

𝚺𝚺𝑖𝑖𝑖𝑖 = var(𝑥𝑥𝑖𝑖) = 𝜎𝜎𝑖𝑖𝑖𝑖   Equation 202 

The off-diagonal elements in 𝚺𝚺 relate to the correlations between the coordinates of 𝒙𝒙: 

cor�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝜌𝜌𝑖𝑖𝑖𝑖 =
𝜎𝜎𝑖𝑖𝑖𝑖

�𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗
  Equation 203 

The correlation coefficient 𝜌𝜌 between two variables must have a value between +1 and −1. When 𝑘𝑘 > 2, there are 
further constraints on the magnitude of 𝜌𝜌 (see the Perfect Negative Dependency section below).  

The probability density function of the MVN is: 

𝑓𝑓(𝑥𝑥1,⋯ , 𝑥𝑥𝑘𝑘) =
𝑒𝑒−

1
2(𝒙𝒙−𝒖𝒖)𝑇𝑇𝚺𝚺−1(𝒙𝒙−𝒖𝒖)

�(2𝜋𝜋)𝑘𝑘|𝚺𝚺|
  Equation 204 

where 𝒙𝒙 is a 𝑘𝑘-dimensional vector of values; 𝒖𝒖 is a 𝑘𝑘-dimensional vector of mean values; 𝚺𝚺 is the 𝑘𝑘 ×  𝑘𝑘 covariance 
matrix; and |𝚺𝚺| is the determinant of 𝚺𝚺, also know as the generalized variance.  

It is important to note that while the dependency between failure modes and system components is modeled with the 
MVN, their marginal distributions are not required to be Normally distributed. The probability values of each marginal 
distribution are transformed to standard Normal 𝑧𝑧 variates. Then, the dependency between the transformed 𝑧𝑧 variates 
is modeled with the MVN, assuming a mean vector of 0 and variances of 1. When the variances are 1, the covariance 
matrix and correlation matrix are equivalent. Please see the Correlation Matrix section below for more details.  

 

 

 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
134 

 

Positive Definite Matrices 
The covariance matrix 𝚺𝚺 of the MVN must be positive definite. For a symmetric matrix 𝑨𝑨 to be positive definite, the 
determinant must be greater than zero. The determinant describes important information about the matrix with just a 
single scalar value. For example, the determinant of a 2 × 2 matrix is: 

|𝑨𝑨| =  �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏  Equation 205 

And the determinant of a 3 × 3  matrix is: 

|𝑨𝑨| =  �
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� = 𝑎𝑎 �𝑒𝑒 𝑓𝑓
ℎ 𝑖𝑖

� − 𝑏𝑏 �𝑑𝑑 𝑓𝑓
𝑔𝑔 𝑖𝑖 � + 𝑐𝑐 �𝑑𝑑 𝑒𝑒

𝑔𝑔 ℎ�  Equation 206 

|𝑨𝑨| =  �
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� = 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐ℎ − 𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎ℎ  Equation 207 

There are a few important qualities of a positive definite matrix [71]: 

• If matrix 𝑨𝑨 is positive definite, then its eigenvalues are positive numbers and therefore the matrix is invertible. 
 

• The inverse of a positive definite matrix is also a positive definite matrix. 
 

• If matrix 𝑨𝑨 is positive definite, then all the diagonal entries are positive. 
 

• If matrix 𝑨𝑨 is positive definite, then there exists a unique lower triangular matrix 𝑹𝑹, with positive diagonal 
entries, such that: 

𝑨𝑨 = 𝑹𝑹𝑹𝑹𝑇𝑇  Equation 208 

Equation 208 plays an important role in Cholesky decomposition, which is required to generate random values from a 
MVN distribution.  

Correlation Matrix 
The covariance matrix for three variables can be written as: 

𝚺𝚺 = �
𝜎𝜎1,1 𝜎𝜎1,2 𝜎𝜎1,3
𝜎𝜎2,1 𝜎𝜎2,2 𝜎𝜎2,3
𝜎𝜎3,1 𝜎𝜎3,2 𝜎𝜎3,3

�  Equation 209 

where the off-diagonal elements are the covariances, 𝜎𝜎1,2, and the diagonal elements are the variances, 𝜎𝜎1,1 = 𝜎𝜎12. 
When using the standard MVN for dependency, the mean vector is 0 and variances are 1. As such, the covariance 
and correlation between two variables are equivalent: 

𝜌𝜌𝑖𝑖𝑖𝑖 =
𝜎𝜎𝑖𝑖𝑖𝑖

�𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗
=  

𝜎𝜎𝑖𝑖𝑖𝑖
√1 ∙ 1

= 𝜎𝜎𝑖𝑖𝑖𝑖   Equation 210 

For this reason, the dependency structure in RMC-TotalRisk is defined using a correlation matrix rather than a 
covariance matrix.  
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Because there is typically limited observed data on failure modes, there are only two options for defining dependency 
between failure modes within a system component. As discussed in the Quantitative Risk Analysis chapter, by default 
every failure mode is assumed to be independent of all the others. This is the unimodal upper bound for a series 
system when failure modes have non-negative dependency [9]. Alternatively, the user can set each failure mode as 
non-independent. In this case, these non-independent failure modes are treated as perfectly negatively dependent of 
all the others. Perfect negative dependency is the unimodal upper bound for series systems [9]. 

There are four options for defining dependency between system components: 1) perfect independence; 2) perfect 
positive dependency; 3) perfect negative dependency; and 4) user-defined correlation matrix.  

The only requirement for the user-defined correlation matrix is that it be positive definite. The details of the first three 
options are described in the following subsections.  

Perfect Independence 
When inputs are perfectly independent, the correlation between inputs is 0. An example correlation matrix for three 
variables with perfect independence is: 

𝚺𝚺 = �
1 0 0
0 1 0
0 0 1

�  Equation 211 

Recall from Appendix A, the joint probability of three independent variables is simply: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = 𝑃𝑃(𝐴𝐴) ∙ 𝑃𝑃(𝐵𝐵) ∙ 𝑃𝑃(𝐶𝐶)  Equation 212 

For example, if 𝑃𝑃(𝐴𝐴) = 0.25, 𝑃𝑃(𝐵𝐵) = 0.35, and 𝑃𝑃(𝐶𝐶) = 0.50, then: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = 0.25 ∙ 0.35 ∙ 0.50 = 0.04375  Equation 213 

Perfect Positive Dependency 
When inputs are perfectly positively dependent, the correlation between inputs is 1. An example correlation matrix for 
three variables with perfect positive dependency is: 

𝚺𝚺 = �
1 1 1
1 1 1
1 1 1

�  Equation 214 

The joint probability of three perfectly positively dependent variables is simply the minimum of each: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = min[𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐵𝐵),𝑃𝑃(𝐶𝐶)]  Equation 215 

In keeping with the previous example: 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶) = min[0.25, 0.35, 0.50] = 0.25  Equation 216 
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Perfect Negative Dependency 
When two inputs are perfectly negatively dependent, the correlation between inputs is −1. However, when there are 
more than two variables, there is a limit to how negative the dependency can be such that the correlation matrix is still 
positive definite. For example, the correlation matrix for three variables can be written as: 

𝚺𝚺 = �
1 𝑎𝑎 𝑏𝑏
𝑎𝑎 1 𝑐𝑐
𝑏𝑏 𝑐𝑐 1

�  Equation 217 

The determinant of this matrix must be positive: 

|𝚺𝚺| = �
1 𝑎𝑎 𝑏𝑏
𝑎𝑎 1 𝑐𝑐
𝑏𝑏 𝑐𝑐 1

� = 1 + 2𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎2 − 𝑏𝑏2 − 𝑐𝑐2 > 0   Equation 218 

If each variable has the same level of negative correlation, the minimum allowable correlation coefficient 𝜌𝜌 can be 
determined as follows: 

|𝚺𝚺| = �
1 𝜌𝜌 𝜌𝜌
𝜌𝜌 1 𝜌𝜌
𝜌𝜌 𝜌𝜌 1

� = 1 + 2𝜌𝜌3 − 3𝜌𝜌2 = 0   Equation 219 

Rearranging: 

2𝜌𝜌3 − 3𝜌𝜌2 + 1 = 0   Equation 220 

Factoring: 

(𝜌𝜌 − 1)2(2𝜌𝜌 + 1) = 0   Equation 221 

Following the zero-factor principle: 

𝜌𝜌 − 1 = 0  or  2𝜌𝜌 + 1 = 0  Equation 222 

Solving each side gives: 

𝜌𝜌 − 1 = 0  so  𝜌𝜌 = 1  Equation 223 

2𝜌𝜌 + 1 = 0  so  𝜌𝜌 = −1
2
  Equation 224 

This can also be seen by plotting the determinant function as shown in Figure 75 below. In summary, when each 
variable has the same level of negative correlation, the formula for the minimum allowable negative correlation can be 
generalized to be: 

𝜌𝜌 >  −
1

𝑘𝑘 − 1
  Equation 225 

where 𝑘𝑘 is the number of variables or dimensions.  
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Figure 75 – Graphical function of the determinant of a three variable correlation matrix. 

 

In RMC-TotalRisk, by default every failure mode is assumed to be independent. However, the user can choose to set 
a single failure mode to be non-independent. In this case, the single non-independent failure mode is set to have 
perfect negative dependency, while the other failure modes are still assumed to be independent. In keeping with the 
three-variable example, the user might select variable C to be non-independent. The minimum allowable negative 
correlation can be solved as follows: 

|𝚺𝚺| = �
1 0 𝜌𝜌
0 1 𝜌𝜌
𝜌𝜌 𝜌𝜌 1

� = 1 − 2𝜌𝜌2 = 0   Equation 226 

|𝚺𝚺| = �
1 0 𝜌𝜌
0 1 𝜌𝜌
𝜌𝜌 𝜌𝜌 1

� = 1 − (𝑘𝑘 − 1)𝜌𝜌2 = 0 
 Equation 227 

𝜌𝜌 = ± 
1

√𝑘𝑘 − 1
 

 Equation 228 

A plot of the determinant function in Equation 227 is shown in Figure 76. From this solution, it can be deduced that 
when only one variable is negatively dependent, while the remaining are independent, the minimum allowable 
negative correlation is: 

𝜌𝜌 >  −
1

√𝑘𝑘 − 1
  Equation 229 

 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
138 

 

 
Figure 76 – Graphical function of the determinant of a three variable correlation matrix with one non-independent variable. 

 

Now, consider a scenario with four variables, two are negatively dependent and two are independent. To solve for the 
minimum allowable negative correlation, set the determinant equal to zero and solve the root.  

|𝚺𝚺| = �

1 0 𝜌𝜌 𝜌𝜌
0 1 𝜌𝜌 𝜌𝜌
𝜌𝜌 𝜌𝜌 1 𝜌𝜌
𝜌𝜌 𝜌𝜌 𝜌𝜌 1

� = 0  Equation 230 

−
1

√𝑘𝑘 − 1
≤ 𝜌𝜌 ≤ −

1
𝑘𝑘 − 1

 
 Equation 231 

−0.577 ≤ 𝜌𝜌 ≤ −0.333 …  Equation 232 

After solving the root using the Brent method [64], it is determined that the minimum allowable correlation 𝜌𝜌 >  −0.39.   

Computing the joint probability of perfectly negatively dependent variables is challenging. The next section provides 
details on computing the cumulative distribution function (i.e., the joint probability) of the MVN.  
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Joint Probability 
The risk analysis of a system with several potential failure modes requires the integration of the MVN distribution as 
follows: 

𝐹𝐹(𝑐𝑐1,⋯ , 𝑐𝑐𝑘𝑘) = 𝑃𝑃 ��(𝑋𝑋𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

� = � ⋯ �
𝑒𝑒−

1
2𝒙𝒙

𝑇𝑇𝚺𝚺−1𝒙𝒙

�(2𝜋𝜋)𝑘𝑘|𝚺𝚺|

𝑐𝑐𝑘𝑘

−∞

𝑐𝑐1

−∞

∙ 𝑑𝑑𝑥𝑥1 ⋯𝑑𝑑𝑥𝑥𝑘𝑘   Equation 233 

where 𝑋𝑋𝑘𝑘 ≤ 𝑐𝑐𝑘𝑘 denotes 𝑘𝑘 limit states of a system in standard Normal 𝑧𝑧 space, and 𝚺𝚺 is the correlation matrix among 
failure modes.  

Genz [72] solved Equation 233 with an adaptive Monte Carlo integration technique, and his solution is widely used in 
statistical software. However, numerical integration becomes impractical for large 𝑘𝑘 due to long runtimes. Pandey [73] 
proposed a simpler approach using the product of conditional marginals (PCM), which has much faster runtimes and 
maintains a high level of accuracy. Yuan and Pandey [74] proposed improvements to PCM and demonstrated the 
superior accuracy of PCM compared to other approximations. Considering the faster runtimes and accuracy, RMC-
TotalRisk uses the PCM method for computing the joint probabilities with the MVN distribution.  

Product of Conditional Marginals 
The main concept behind PCM is that Equation 233 can be represented as a product of 𝑘𝑘 conditional probability 
terms, where each conditional probability is approximated by a one-dimensional Normal distribution: 

𝐹𝐹(𝑐𝑐1,⋯ , 𝑐𝑐𝑘𝑘) = 𝑃𝑃 �(𝑋𝑋𝑘𝑘 ≤ 𝑐𝑐𝑘𝑘)|�(𝑋𝑋𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖)
𝑘𝑘−1

𝑖𝑖=1

� × 𝑃𝑃 �(𝑋𝑋𝑘𝑘−1 ≤ 𝑐𝑐𝑘𝑘−1)|�(𝑋𝑋𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖)
𝑘𝑘−2

𝑖𝑖=1

� × ⋯× 𝑃𝑃(𝑋𝑋1 ≤ 𝑐𝑐1)  Equation 234 

𝐹𝐹(𝑐𝑐1,⋯ , 𝑐𝑐𝑘𝑘) ≈ Φ�𝑐𝑐𝑘𝑘|𝑘𝑘−1�  Equation 235 

where 𝑐𝑐𝑘𝑘|𝑘𝑘−1 represents a conditional Normal fractile (𝑧𝑧 variate) obtained by assuming that the conditional variable 
𝑋𝑋𝑘𝑘|𝑘𝑘−1 is Normally distributed with a certain mean and variance. Equation 235 is solved in the following way: 

𝑐𝑐𝑗𝑗|𝑘𝑘 =
�𝑐𝑐𝑗𝑗 − 𝜇𝜇𝑗𝑗|𝑘𝑘�

𝜎𝜎𝑗𝑗|𝑘𝑘
  Equation 236 

where the mean and standard deviation are calculated by the following: 

𝜇𝜇𝑗𝑗|𝑘𝑘 = −𝜌𝜌(𝑘𝑘,𝑗𝑗)|(𝑘𝑘−1) ∙ 𝐴𝐴𝑘𝑘|(𝑘𝑘−1)  Equation 237 

𝜎𝜎𝑗𝑗|𝑘𝑘 = �1 − 𝜌𝜌2(𝑘𝑘,𝑗𝑗)|(𝑘𝑘−1) ∙ 𝐵𝐵𝑘𝑘|(𝑘𝑘−1) 
 Equation 238 

𝐴𝐴𝑘𝑘|(𝑘𝑘−1) =
𝜙𝜙�𝑐𝑐𝑘𝑘|𝑘𝑘−1�
Φ�𝑐𝑐𝑘𝑘|𝑘𝑘−1�

 
 Equation 239 

𝐵𝐵𝑘𝑘|(𝑘𝑘−1) = 𝐴𝐴𝑘𝑘|(𝑘𝑘−1) ∙ �𝑐𝑐𝑘𝑘|𝑘𝑘−1 + 𝐴𝐴𝑘𝑘|(𝑘𝑘−1)�  Equation 240 
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The correlation between 𝑋𝑋𝑘𝑘 and 𝑋𝑋𝑗𝑗 conditional on ⋂ (𝑋𝑋𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖)𝑘𝑘−1
𝑖𝑖=1  is given by: 

𝜌𝜌(𝑘𝑘+1,𝑗𝑗+1)|𝑘𝑘 =
𝜌𝜌(𝑘𝑘+1,𝑗𝑗+1)|(𝑘𝑘−1) − 𝜌𝜌(𝑘𝑘,𝑘𝑘+1)|(𝑘𝑘−1) ∙ 𝜌𝜌(𝑘𝑘,𝑗𝑗+1)|(𝑘𝑘−1) ∙ 𝐵𝐵𝑘𝑘|(𝑘𝑘−1)

��1 − 𝜌𝜌2(𝑘𝑘,𝑘𝑘+1)|(𝑘𝑘−1) ∙ 𝐵𝐵𝑘𝑘|(𝑘𝑘−1)� ∙ �1 − 𝜌𝜌2(𝑘𝑘,𝑗𝑗+1)|(𝑘𝑘−1) ∙ 𝐵𝐵𝑘𝑘|(𝑘𝑘−1)�
 

Equation 241 

which is also referred to as the partial correlation between 𝑋𝑋𝑘𝑘 and 𝑋𝑋𝑗𝑗. 

In summary, the PCM involves recursive calculations of two variables, the conditional fractile and conditional 
correlation coefficient. The recursion is performed in an optimized way within the correlation matrix 𝚺𝚺 similar to 
Gaussian elimination. For more details on this method please see [73] and [74]. For algorithmic details, the MATLAB® 
code for the PCM method is provided in [74]. 

Generating Correlated Random Numbers 
In RMC-TotalRisk, the dependency between system components is modeled by assigning correlation between the 
component hazard functions. For example, if there are two levees in a system on the same river reach, the flood 
hazards at each levee will be strongly positively correlated.  The system risk calculations require that the 
nonexceedance probabilities of the component hazard levels be generated from the MVN. The following steps are 
followed: 

1. Create a vector of independent random numbers 𝒓𝒓 = {𝑟𝑟1,⋯ , 𝑟𝑟𝑘𝑘}, where  𝑟𝑟𝑖𝑖 ~𝑈𝑈[0, 1] 
 

2. Convert the vector to standard Normal z-variates 𝒛𝒛 = {Φ−1(𝑟𝑟1),⋯ ,Φ−1(𝑟𝑟𝑘𝑘)} 
 

3. Generate a correlated vector of z-variates 𝒖𝒖 = 𝑨𝑨𝑨𝑨, where 𝑨𝑨 is the Cholesky decomposition of the correlation 
matrix 𝚺𝚺.  
 

4. Convert the vector back to random numbers 𝒓𝒓 = {Φ(𝑢𝑢1),⋯ ,Φ(𝑢𝑢𝑘𝑘)}, where  𝑟𝑟𝑖𝑖 ~𝑈𝑈[0, 1] 

  

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
141 

 

Appendix G – Sensitivity Analysis 
Sensitivity analysis quantifies variations in the model outputs caused by possible variations in model inputs [75]. It can 
be used to rank the relative importance of different model inputs and to determine which model inputs contribute the 
most to the variance of model outputs.  

In RMC-TotalRisk, a derivative-based sensitivity analysis is provided for the Event Tree and Risk Analysis 
components of the software. The partial derivative measures how sensitive an output component 𝑓𝑓 is with respect to 
an input parameter 𝜃𝜃𝑖𝑖 when all other input parameters are held fixed. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

 (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  Equation 242 

In RMC-TotalRisk, the partial derivatives are evaluated using numerical differentiation with the two-point formula: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑓𝑓(𝜃𝜃 + ℎ) − 𝑓𝑓(𝜃𝜃 − ℎ)

2ℎ
  Equation 243 

where ℎ represents a small change in 𝜃𝜃. To compare the sensitivities of different state variables with respect to 
different parameters, the dimensionless sensitivity, or sensitivity index, of an output component 𝑓𝑓 to an input can be 
defined by normalizing with the mean of the 𝜃𝜃𝑖𝑖 and 𝑓𝑓: 

𝑆𝑆𝑆𝑆𝑖𝑖 =
𝜇𝜇𝜃𝜃𝑖𝑖
𝜇𝜇𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

 (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  Equation 244 

where 𝜇𝜇𝜃𝜃 is the mean value for each input; and 𝜇𝜇𝑓𝑓 is the mean value of each output. Alternatively, the sensitivity 
index can be defined by normalizing by the variance of the 𝜃𝜃𝑖𝑖 and 𝑓𝑓. The variance of a single model output component 
𝑓𝑓 is given by: 

𝜎𝜎𝑓𝑓2 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

 𝚺𝚺(𝑖𝑖, 𝑗𝑗)
𝑛𝑛

1=𝑗𝑗

𝑛𝑛

𝑖𝑖=1

  Equation 245 

where 𝚺𝚺 is the covariance matrix for the input parameters. The variance of each parameter is in the diagonal of 𝚺𝚺. For 
example, if the model has two inputs, Equation 245 can be written longhand as follows: 

𝜎𝜎𝑓𝑓2 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

�
2

𝜎𝜎𝜃𝜃1
2 + �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃2

�
2

𝜎𝜎𝜃𝜃2
2 + 2 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

� �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃2

� cov(𝜃𝜃1,𝜃𝜃2)  Equation 246 

where cov is the covariance between the pairwise input parameters. If the model inputs are independent and have no 
covariance, then Equation 246 reduces to: 

𝜎𝜎𝑓𝑓2 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

�
2

𝜎𝜎𝜃𝜃1
2 + �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃2

�
2

𝜎𝜎𝜃𝜃2
2   Equation 247 

The variance-based sensitivity index is then computed as: 

𝑆𝑆𝑆𝑆𝑖𝑖 =
𝜎𝜎𝜃𝜃𝑖𝑖
2

𝜎𝜎𝑓𝑓2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

�
2

 (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  Equation 248 

Equation 248 is often referred to as the main effect index or the contribution to variance [76]. This provides the 
fractional contribution of variance from the input to the total output variance.  

 

DRAFT



 
Quantitative Risk Analysis with the RMC-TotalRisk Software 

 

 

  
142 

 

In the risk analysis, it is challenging to compute the partial derivatives of the output with respect to each input. Instead, 
the sensitivity index is derived from a linear regression of inputs and output from a Monte Carlo simulation. For each 
Monte Carlo realization, the sampled inputs 𝜃𝜃 and the resulting output 𝑦𝑦 are stored in a matrix. Then, a multiple linear 
regression is estimated as: 

𝑦𝑦 = �𝛽𝛽𝑖𝑖𝜃𝜃𝑖𝑖 + 𝜀𝜀
𝑛𝑛

𝑖𝑖=1

  Equation 249 

where the regression coefficient 𝛽𝛽𝑖𝑖 measures the effect that input 𝜃𝜃𝑖𝑖 has on the predicted value 𝑦𝑦; and 𝜀𝜀 is the model 
error, or residual. The variance in 𝜃𝜃𝑖𝑖 and 𝑦𝑦 can be estimated directly from the array of Monte Carlo samples. Then, the 
sensitivity index is computed as: 

𝑆𝑆𝑆𝑆𝑖𝑖 =
𝜎𝜎𝜃𝜃𝑖𝑖
2

𝜎𝜎𝑦𝑦2
𝛽𝛽𝑖𝑖2 (𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  Equation 250 

Correlation Measures 
RMC-TotalRisk also provides correlation measures to describe the strength and direction of an association between 
the simulated input and output variables in the Event Tree and Risk Analysis. Pearson’s correlation coefficient is a 
measure of linear correlation between two variables and is defined as:  

𝜌𝜌 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1
  Equation 251 

Spearman’s rank order correlation is estimated by first replacing the two variables by their ranks. Then, the Spearman 
correlation coefficient is calculated by estimating the Pearson correlation with the ranks instead of the values. 
Spearman’s correlation is preferred for data that follow curvilinear, monotonic relationships.  
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Appendix H – Equivalent Annual 
Consequences 
Equivalent Annual Consequences (EqAC) are applicable when considering changes in hazard, response, or 
consequences over the life of a project by discounting the future expected value to the base year resulting in an 
equivalent value over the life of the project. EqAC is a primary decision metric for planning in the USACE [10]. The 
methods applied in RMC-TotalRisk to calculate EqAC are based on procedures from the HEC-FDA User’s Manual 
[13] as follows: Future year damage values are linearly interpolated between the base and most likely future year 
conditions and assumed constant from the most likely future year to the end of the analysis period. The analysis 
period (project life) is the period of time over which the plan has significant beneficial or adverse effects. It is normally 
50 years and is not to exceed 100 years. Data requirements in RMC-TotalRisk to calculate EqAC are base year risk 
analysis and year, future year risk analysis and year, discount rate, and period of analysis. EqAC is computed as 
follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇  Equation 252 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is the Equivalent Annual Consequence Value; 𝐶𝐶𝐶𝐶𝐶𝐶 is the Capital Recovery Factor; and 𝑇𝑇𝑇𝑇𝑇𝑇 is the Total 
Present Value. The capital recovery factor (CRF) is the ratio used to calculate the present value of an annuity 
(consequence). It is related to the annuity formula. The capital recovery factor can be represented as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑟𝑟 ∙ (1 + 𝑟𝑟)𝑛𝑛

(1 + 𝑟𝑟)𝑛𝑛 − 1
  Equation 253 

where 𝑟𝑟 is the discount rate; and 𝑛𝑛 is the planning period in years. The Total Present Value (TPV) is the sum of 
present values calculated for each year over the lifetime of the project: 

𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑃𝑃𝑃𝑃𝑖𝑖

𝑏𝑏+𝑛𝑛

𝑖𝑖=𝑏𝑏

  Equation 254 

where 𝑃𝑃𝑃𝑃𝑖𝑖 is the present value for a given year 𝑖𝑖; 𝑏𝑏 is the base year; and 𝑛𝑛 is the period of analysis. Present value 
(PV) is the value as of the base year of some amount in the future. Starting from the base year and extending to the 
period of analysis, the present value is estimated as follows: 

𝑃𝑃𝑃𝑃𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖 ∙ (1 + 𝑟𝑟)−(𝑖𝑖−𝑏𝑏)  Equation 255 

where 𝑃𝑃𝑃𝑃𝑖𝑖 is the present value for a given year 𝑖𝑖; 𝐹𝐹𝐹𝐹𝑖𝑖 is the future value for the given year; 𝑟𝑟 is the discount rate; and 
(𝑖𝑖 − 𝑏𝑏) is the period of analysis represented as the given year minus the base year. The future value (FV) is 
calculated as a stepwise function of either linearly interpolating between base and future years or taking the future 
year expected annual consequences: 

𝐹𝐹𝐹𝐹𝑖𝑖 = �
𝑦𝑦𝑓𝑓 ,  𝑖𝑖 ≥ 𝑦𝑦𝑓𝑓

𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏 +  �𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓 −  𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏� �
𝑖𝑖 −  𝑦𝑦𝑏𝑏
𝑦𝑦𝑓𝑓 −  𝑦𝑦𝑏𝑏

� ,  𝑖𝑖 < 𝑦𝑦𝑓𝑓
  Equation 256 

where 𝐹𝐹𝐹𝐹𝑖𝑖 is the value for any future year 𝑖𝑖; EAC𝑏𝑏 is the expected annual consequence (damages) for the base year 
conditions 𝑏𝑏; and EAC𝑓𝑓 is the expected annual consequence for the future year conditions 𝑓𝑓;  y𝑓𝑓 is the year of the 
future 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓 estimate; y𝑏𝑏 is the year of the base 𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏 estimate;.  
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Appendix I – National Flood Insurance 
Program 
The purpose of constructing a levee is to reduce flood risk for the area behind the levee. Certified levees which 
reduce flood risk from the 0.01 annual exceedance probability (AEP) event, or base flood, are eligible for accreditation 
in the National Flood Insurance Program (NFIP) administered by the Federal Emergency Management Agency 
(FEMA). FEMA can only accredit certified levees for its flood hazard and risk mapping effort which meet minimum 
design, performance, operation, and maintenance standards that are consistent with criteria specified in Title 44, Part 
65.10 of the Code of Federal Regulations or CFR [77]. 

The USACE plays a significant role in managing flood risk nationwide since the enactment of the Flood Control Act of 
1917 including design, construction, and risk assessment of levee systems [2]. The USACE uses a risk-informed 
approach to perform NFIP Levee System Evaluations (LSEs) to make a recommendation about whether to certify and 
accredit a levee system. 

USACE guidance for conducting LSEs to assess levee accreditation is currently outlined in Engineering and 
Construction Bulletin (ECB) 2019-11 [78]. The ECB specifies that USACE and FEMA should rely on Semi-
Quantitative Risk Assessments (SQRAs) or Quantitative Risk Assessments (QRAs) to make NFIP accreditation 
recommendations [78]. 

All QRAs must include a computation of assurance of the 0.01 AEP, which is the probability that the 0.01 AEP event 
will not be exceeded [78]. The 0.01 AEP is the annual probability that the leveed area will be inundated due to levee 
overtopping or breach in any given year. If the computed assurance of the 0.01 AEP is less than 65%, then the 
recommendation should be Do Not Accredit the levee system. Substantial evidence with high confidence and limited 
uncertainty is needed to support a NFIP levee accreditation recommendation when the assurance is less than 65%. If 
the computed assurance for the 0.01 AEP is greater than 85%, then the recommendation should be to Accredit the 
levee system. Only strong evidence or significant uncertainty should result in a recommendation of Do Not Accredit if 
the assurance is greater than 85%. If the computed assurance of containing the 0.01 AEP event falls between 65% 
and 85% then the accreditation recommendation must be supported based on uncertainty, past system performance, 
and other factors [78]. 

Annual Probability of Inundation 
Computation of assurance of the 0.01 AEP for the NFIP requires an estimate of the annual probability of inundation 
(API), which is the probability that the leveed area will be inundated due to levee overtopping or breach in any given 
year. To compute the API, the user must select the Profile Hazard Type and specify the Hazard Threshold for the 
desired system component as shown in Figure 77: 

• Profile Hazard Type: The hazard type used for constructing risk profiles and used for estimating the 
probability of exceeding the hazard threshold. For a levee accreditation analysis, the hazard type should be 
stage or water surface elevation.  
 

• Hazard Threshold: The probability of hazard levels exceeding the threshold will be recorded in the risk 
simulation. For a levee accreditation analysis, the hazard threshold should be the top of levee height or 
elevation. 
 

 
Figure 77 - Setting the profile hazard type and threshold level for the system component. 
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For a typical levee, the leveed area can be inundated in three ways: 1) the levee fails prior to overtopping; 2) the levee 
overtops and fails; and 3) the levee overtops without failing. Therefore, the probability of inundation is the union of 
three events: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃(𝑂𝑂𝑂𝑂����  ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∪ 𝑃𝑃(𝑂𝑂𝑂𝑂 ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∪ 𝑃𝑃�𝑂𝑂𝑂𝑂 ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�������  Equation 257 

where 𝑃𝑃(𝑂𝑂𝑂𝑂����  ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) is the probability that the levee fails prior to overtopping; 𝑃𝑃(𝑂𝑂𝑂𝑂 ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) is the probability that the 
levee overtops and fails; and 𝑃𝑃�𝑂𝑂𝑂𝑂 ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹������� is the probability that the levee overtops without failing. The first two 
events are equivalent to the total probability of failure for the levee, which in RMC-TotalRisk is computed as: 

𝑃𝑃(𝑂𝑂𝑂𝑂����  ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∪ 𝑃𝑃(𝑂𝑂𝑂𝑂 ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) = 𝛼𝛼F

𝑛𝑛

𝑖𝑖=1

  Equation 258 

where 𝑃𝑃(𝑥𝑥𝑖𝑖) is the probability of the hazard level 𝑥𝑥𝑖𝑖; 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) is the conditional probability of failure given the hazard 
level 𝑥𝑥𝑖𝑖; and 𝛼𝛼F is the probability of failure from all failure modes. The third event, which is the probability the levee 
overtops without failing, is computed as: 

𝑃𝑃�𝑂𝑂𝑂𝑂 ∩ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹������� = 𝑃𝑃(𝑥𝑥 ≥ 𝑥𝑥𝑇𝑇) = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ {1 − 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)}
𝑛𝑛

𝑖𝑖=𝑥𝑥𝑇𝑇

  Equation 259 

where 𝑥𝑥𝑇𝑇 is the hazard threshold set by the user, which in this case is the top of levee height; {1 − 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)} is the 
probability of non-failure given the hazard level 𝑥𝑥𝑖𝑖, which is simply the complement of the probability of failure at a 
given hazard level. The probability of inundation is then computed as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖) + �𝑃𝑃(𝑥𝑥𝑖𝑖) ∙ {1 − 𝑃𝑃(𝐹𝐹|𝑥𝑥𝑖𝑖)}
𝑛𝑛

𝑖𝑖=𝑥𝑥𝑇𝑇

𝑛𝑛

𝑖𝑖=1

  Equation 260 

For NFIP applications, the hazard threshold 𝑥𝑥𝑇𝑇 should be the top of levee height, or elevation. The hazard threshold 
defines when overtopping (OT) occurs at the levee. However, this formula is generalized in RMC-TotalRisk, so the 
calculation will work for other threshold-based applications as well.  

Assurance 
The level of assurance (e.g., the levee can be accredited with 85% assurance) is synonymous with the confidence 
level, i.e., the leveed area is inundated with a probability of 0.01 or less, with 85% confidence. To assess the level of 
assurance with RMC-TotalRisk, the risk analysis must be simulated with full uncertainty. The user must enter the 
number of Monte Carlo realizations. The default is 1,000 to ensure reasonably accurate confidence intervals. For 
accurate assurance calculations, it is recommended to run 10,000 realizations.  

After the risk analysis is complete, the user can navigate to the Diagnostics tab, and then the Assurance tab. Figure 
78 shows the standard cumulative distribution plot for assurance. The API is on the x-axis, and the non-exceedance 
probability of the uncertainty in the API is on the y-axis. For this example, the mean API is shown as a vertical, 
dashed blue line at 0.00643. The target level of 0.01 (100-yr), which is shown as a vertical orange line, is shown to 
have an assurance level of 84.6%. The API and assurance results can also be plotted as a kernel density as shown in 
Figure 79.  

If the assurance level is less than 65%, the target level line will be plotted as a vertical red line. If the assurance is 
between 65% and 85%, the target level line will be plotted as an orange line. If the assurance is greater than 85%, it 
will be plotted as a greed line. In the example below, the assurance of containing the 0.01 AEP event falls between 
65% and 85%. Therefore, the levee accreditation recommendation must be supported based on uncertainty, past 
system performance, and other factors [78]. 
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Figure 78 - Example of the cumulative distribution plot for NFIP assurance. 

 

 
Figure 79 - Example of the density plot for NFIP assurance. 
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Additional Risk Measures 
The “probability of inundation” measure computed for levee accreditation is just a flood hazard measure and is not a 
true risk measure. There is no consideration for consequences, just the probability of an inundation depth being 
greater than zero. RMC-TotalRisk provides some additional true risk measures that can be useful for risk-based 
design purposes for levees and dams. The following subsections briefly describe these measures and how they could 
be used to support risk-informed investment decisions. More details on the risk measures are provided in the Risk 
Measures section of the main report.  

Consequence Threshold Probability 
The user can enter a consequence threshold 𝑛𝑛. The probability of consequences exceeding the threshold will be 
recorded in the risk simulation. The default consequence threshold is 0. The exceedance probability is interpolated 
from the F-N curve, which is a survival function, for each risk type: 

𝑆𝑆(𝑛𝑛) = 1 − 𝐹𝐹(𝑛𝑛) =  𝑃𝑃(𝑁𝑁 ≥ 𝑛𝑛)  Equation 261 

After simulating risk with full uncertainty, a kernel density plot and summary statistics are provided (see the 
Diagnostics section). This risk measure provides the expected probability of exceedance of a specified consequence 
level. When designing a new levee, the objective could be that a consequence threshold of $1M should only be 
exceeded 1:100 years, i.e., a 0.01 annual exceedance probability. This risk measure can be used to determine if that 
design objective has been satisfied with a desired level of assurance.  

Value-at-Risk 
The user can enter an exceedance probability 𝛼𝛼, such as 0.01. This exceedance probability is used for computing the 
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). The default exceedance probability is 0.01. The VaR 
provides the minimum consequences for the user-specified exceedance probability 𝛼𝛼. The value is interpolated from 
the F-N curve for each risk type: 

𝑆𝑆−1(𝛼𝛼) = 𝑛𝑛  Equation 262 

The objective for a new levee could be that the minimum consequences allowable for a 100-year flood must be $1M. 
This risk measure can be used to determine if that design objective has been satisfied with a desired level of 
assurance. 

Conditional Value-at-Risk 
The Conditional Value-at-Risk (CVaR) provides the mean (or expected) consequences for the user-specified 
exceedance probability 𝛼𝛼. The value is computed by integrating under the F-N curve for each risk type in the 
prescribed probability range: 

𝔼𝔼[𝑁𝑁|𝑁𝑁 ≥ 𝛽𝛽] =
1
𝛼𝛼
� 𝑥𝑥 ∙ 𝑑𝑑𝑑𝑑(𝑥𝑥)
∞

𝛽𝛽

  Equation 263 

where 𝛽𝛽 =  𝑆𝑆−1(𝛼𝛼) = 𝑛𝑛. CVaR is estimated using numerical integration with adaptive Simpson’s rule (see Appendix D 
for more details).  

The objective for a new levee could be that the mean consequences allowable for a 100-year flood must be less than 
$10M. This risk measure can be used to determine if that design objective has been satisfied with a desired level of 
assurance. 
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