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Abstract

The purpose of this document is to provide verification and validation of key computations in RMC-
TotalRisk. Software verification involves comparison of the numerical solution generated by the code
with theoretical and analytical solutions, or with other known numerical solutions. Verification ensures
that the software accurately solves the equations that constitute the mathematical model. RMC-
TotalRisk has three main components that required verification: 1) general numerical methods; 2) input
functions; and 3) quantitative risk analysis. The numerical components were verified against theoretical
solutions and Monte Carlo simulation, as well as several prominent software used in industry. In all
cases, the computations in RMC-TotalRisk performed as intended.



Introduction

The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC) developed the quantitative
risk analysis software (RMC-TotalRisk) to enhance and expedite risk assessments within the Flood Risk
Management, Planning, and Dam and Levee Safety communities of practice.

RMC-TotalRisk is a menu-driven software, which performs risk analysis from user defined hazard, system
response, and consequence functions. The software features a fully integrated modelling platform,
including a modern graphical user interface, data entry capabilities, report quality charts, and
diagnostics. TotalRisk can perform multi-failure risk analysis for a single dam or levee or for a complex
system with multiple components.

The purpose of this document is to provide verification of critical RMC-TotalRisk computations. Software
verification involves comparison of the numerical solution generated by the code with one or more
analytical solutions, or other numerical solutions. Verification ensures that the software accurately
solves the equations that constitute the mathematical model.

The RMC-TotalRisk software uses two dynamic link libraries (dll) for performing numerical analyses:
Numerics.dll and RMC.TotalRisk.dll. Numerics is a numerical library for .NET, which provides methods
and algorithms for numerical computations in science and engineering. Numerics includes routines for
special functions, interpolation, statistics, random numbers, probability distributions, uncertainty
analysis, integration, optimization, root finding, and more. RMC.TotalRisk is a model library for the RMC-
TotalRisk software, written in the .NET framework, which contains all remaining necessary functionality
for input functions and quantitative risk analysis. Both libraries were developed internally by the RMC
and, as such, the numerical methods contained within these libraries need to be verified.

The RMC-TotalRisk software has three main components that required verification: 1) general numerical
methods; 2) input functions; and 3) quantitative risk analysis. Numerical verification for each component
is detailed in the remaining chapters of this report.

Performance Metries

Every verification test provided in this report is assessed using the following percent difference formula:

, X2 — X1
% Dif ference = [——

-100 Equation 1
X1
where x, is the value computed from Numerics or RMC-TotalRisk; and x; is the actual value (or “true”
value) from either an analytical or numerical solution. All values in Numerics and TotalRisk are computed
with double precision, but results are reported with varying levels of precision depending on the test.

Target performance metrics depend on the test type as shown in Table 1. Verification tests for general
numerical methods have the strictest performance requirements. A percent difference greater than 1%
is considered unsatisfactory. The general numerical methods should produce exact results, with the
exception being numerical integration and differentiation methods since these are approximate in
nature.

10



Table 1 - Performance Ratings for different verification test types.

Test Type

Verification of Numerical Methods
Verification of Input Functions
Verification of Risk Analysis
Comparison with other Risk Software

Very Good Satisfactory Unsatisfactory

0< %Diff <1
1<%Diff <5
1<%Diff <5
1<%Diff <5

The remaining verification test types have more relaxed performance requirements. For these remaining
tests, a percent difference greater than 5% is considered unsatisfactory. The input function and risk
analysis numerical methods have either a Monte Carlo component or an approximate numerical method
component. These methods are approximate in nature and can produce different results depending on
pseudo-random number generators, sample size, and software design choices.

In general, the goal of this verification effort was for all tests to have less than 1% difference. However,
percent differences less than five percent are considered satisfactory, particularly when comparing risk
analysis results from different software. Differences greater than five percent were generally considered
unsatisfactory. All verification results and comparisons with differences greater than five percent
required additional analysis and justification.

In the report, the verification test results are provided in tables, and the percent difference cells are
colored based on the performance ranges in Table 1. An example of the conditional formatting is shown
in Figure 1. Perfect agreement, or zero percent difference, is colored green. One percent difference is
colored white. Percent differences greater than or equal to five are colored red.

Finimum Midpoint Faximum
Type: | Mumber w | | Number |? Mumber e
Value: [0 i| 0.01 + 005 +
Color: | N ~ | (I -

— N B |

Figure 1 - Microsoft Excel© conditional formatting for percent difference.
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Verification of General Numerical Methods

The Numerics library is used to perform a variety of general numerical methods in RMC-TotalRisk.
Numerics.dll is a numerical library for .NET, which provides methods and algorithms for numerical
computations in science and engineering, with a focus on statistical methods. Numerics.dll includes
routines for special functions, interpolation, regression, statistics, probability distributions, bootstrap
uncertainty analysis, Bayesian Markov Chain Monte Carlo, optimization, root finding, and more.

The Numerics library includes hundreds of individual verification tests (commonly referred to as unit
tests) to ensure the software performs as intended. Numerics can be downloaded from GitHub?® and is
free to the public.

This report only provides verification of the general numerical methods considered to be important for
RMC-TotalRisk. These include linear interpolation, probability distribution functions, numerical
integration, numerical differentiation, and linear regression.

Linear Interpolation

In RMC-TotalRisk, the input functions can be defined with either parametric or nonparametric methods.
All nonparametric function calculations are performed using linear interpolation. For example, a
nonparametric (or empirical) probability distribution has the following distribution functions:

X — X;
F(x) =p; + i+1 —P1) <—l) Equation 2
Xix1 — Xi
F_l(p) = x; + (X1 — x;) (ﬂ) Equation 3
Pi+1 — Di

where F(x) is the cumulative distribution function (CDF) of the variable X; F~1(p) is the inverse CDF;
and there is an array of continuous values x = {x;, x5, ..., X, } with non-exceedance probabilities p =
{p1, 02, -, Pn}- The x values and non-exceedance probabilities p must be sorted in ascending order x; <
xippandp, <p, , with0 <p; < 1.

There is often a benefit to applying a transform to the x and p values to improve the accuracy of the
linear interpolation. For example, if the x values increase exponentially in real-space, then they will
increase linearly in log-space. In this case, a log-transform will improve the accuracy of the linear
interpolation of x values.

A log-transform can be applied to the x and/or p values. For example, when the exceedance
probabilities are log-transformed, the inverse CDF becomes:

logp —logp; ) Equation 4

(P) Xi + (xl+1 xl) logpi+1 _ logpi

In addition, a Normal z transform can be applied to the p values as follows:

1 https://github.com/USACE-RMC
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Equation 5

o~ 1(p) — 271 (p) )
O 1(piyq) — P 1(py)

F71(p) = x; + (41 — %) <
where ®@~1(+) is the inverse CDF of the standard Normal distribution.

Table 2 provides an example tabular response function. The x values represent hazard levels, such as
river stage, and the p values represent conditional probabilities of failure at each hazard level. The
response function is shown in Figure 2.

Table 2 - Example tabular response function data.

X Values P Values
50 0.001
100 0.010
150 0.100
200 0.700
250 0.950
300 0.999
Response Distribution
1 e
Mean . i =
P/”
— I;/
= o8-
v )~
5 ).
= 7
= 06 /
Fin /
=
m i
0 A
O n’J
& 044
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Figure 2 - Example tabular response function.

The Numerics.dll implements the smart table searching and interpolation algorithms described in
Numerical Recipes [1]. In addition, Numerics.dll allows transforms on both variables. The Numerics.dll
contains 21 tests for linear interpolation, which includes tests for the smart search routines and for all
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possible combinations of transforms. For the sake of brevity, this report only provides three of these
tests. The other test results can be found in the Numerics download.

Numerical verification was performed using the R ‘stats’ package?. For the first verification test,
interpolation was performed with no transforms on the x and p values. Results are provided in Table 3,
where RMC-TotalRisk has perfect agreement with the R ‘stats’ package.

For the next test, the probability p values were log (base 10) transformed. Figure 3 shows the response
function with the probabilities plotted on a logarithmic axis. Since the smaller probabilities plotin a

straight line, the log-transform provides a more accurate linear interpolation in that range. Verification
results are provided in Table 4, again showing perfect agreement.

Table 3 - Linear Interpolation results.

X Values R ‘stats’ Numerics % Difference
76 0.00568 0.00568 0.0%
80 0.00640 0.00640 0.0%
96 0.00928 0.00928 0.0%
162 0.24400 0.24400 0.0%
170 0.34000 0.34000 0.0%
216 0.78000 0.78000 0.0%
Response Distribution
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Figure 3 - Example tabular response function with probability plotted on logarithmic axis.

2 https://www.rdocumentation.org/packages/stats/versions/3.6.2

14



https://www.rdocumentation.org/packages/stats/versions/3.6.2

Table 4 - Linear Interpolation results with logarithmic transform on probability values.

X Values R ‘stats’ Numerics
76 0.00331 0.00331
80 0.00398 0.00398
96 0.00832 0.00832
162 0.15952 0.15952
170 0.21779 0.21779
216 0.77186 0.77186

In the final test, the probability p values were transformed using the Normal z-variates. Figure 4 shows

% Difference

the response function with the probabilities plotted on a Normal probability axis. Since the function
plots in nearly a straight line, the Normal z-variate transform provides a more accurate linear

interpolation across all probability values. Verification results are provided in Table 5, once again
showing perfect agreement. Example code for replicating these linear interpolation problems with R
‘stats’ is provided in Figure 5 below.

Response Distribution

0.999

1| === Mean

0g9 3!

0o 3
05

014

Conditional Probability [P(Failure | X))

0.01 3¢

0-001 I = T T T

Stage [ft]

Figure 4 - Example tabular response function with probability plotted on Normal probability axis.
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Table 5 - Linear Interpolation results with Normal z-variate transform on probability values.

X Values R ‘stats’ Numerics % Difference
76 0.00354 0.00354
80 0.00425 0.00425
96 0.00848 0.00848
162 0.19818 0.19818
170 0.28802 0.28802
216 0.81137 0.81137
library(stats)

# The tabular x and y data
Xvalues = ¢(50, 100, 150, 200, 250, 300)
Pvalues = ¢(0.001, 0.01, 0.1, 0.7, 0.95, 0.999)

# The numeric values specifying where interpolation is to take place
Xout = ¢(76, 80, 96, 162, 170, 216)

# Perform linear interpolation

Pout = approx(x = Xvalues, y = Pvalues, xout = Xout)Sy
print(Pout)

#[1] 0.00568 0.00640 0.00928 0.24400 0.34000'0.78000

# Perform linear interpolation with log10 transformed p-values

Pout = approx(x = Xvalues, y = log10(Pvalues), xout = Xout)Sy

Pout = 10"Pout # transform back to real-space.

print(Pout)

#1[1] 0.003311311 0.003981072 0.008317638 0.159523081 0.217790642 0.771859442

# Perform linear interpolation with Normal z-variate transformed p-values

Pout = approx(x = Xvalues, y = gnorm(p=Pvalues), xout = Xout)Sy

Pout = pnorm(g=Pout) # transform back to real-space.

print(Pout)

#[1] 0.003540482 0.004245422 0.008482656 0.198184718 0.288022602 0.811367143

Figure 5 — Example code for performing linear interpolation with the R ‘stats’ package.
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Probability Distributions

RMC-TotalRisk provides up to twenty different probability distributions for various input function
options. The technical reference manual [2] provides a detailed description of each distribution and
their typical applications.

All probability distribution functionality in RMC-TotalRisk is contained within Numerics. The Numerics
library includes individual verification tests for all the probability distribution functions and methods.
Comprehensive verification documentation for most these distributions is provided in the RMC-BestFit
report [3].

Table 6 provides a listing of all the probability distributions and their verification sources. This report
only provides verification of the CDF and inverse CDF of the remaining distributions (shown in blue in
Table 6), since these are the only functions used by RMC-TotalRisk. Verification was performed using the
R packages listed in Table 6.

Table 6 - Listing of probability distributions and verification sources.

Distribution Verification Source
Exponential RMC-BestFit Report
Gamma RMC-BestFit Report
Generalized Beta R ‘mc2d’
Generalized Extreme Value RMC-BestFit Report
Generalized Logistic RMC-BestFit Report
Generalized Normal R ‘lmom’
Generalized Pareto RMC-BestFit Report
Gumbel RMC-BestFit Report
Kappa-4 R ‘Imom’
Logistic RMC-BestFit Report
Log-Normal RMC-BestFit Report
Log-Pearson Type lll RMC-BestFit Report
Normal RMC-BestFit Report
Nonparametric RMC-BestFit Report
Pearson Type lll RMC-BestFit Report
PERT R ‘mc2d’
Triangular R ‘mc2d’
Truncated Normal R “truncnorm’
Uniform R ‘stats’
Weibull RMC-BestFit Report

The Generalized Beta, PERT, and Triangular distributions were verified using the R ‘mc2d’ package3. Each
of these distributions are bounded by lower and upper bounds. In RMC-TotalRisk, these distributions
will commonly be used to represent uncertainty in a response probability, so they will be bounded
between 0 and 1. The CDF was evaluated at five different x values. Then, the inverse CDF was evaluated
by inputting the resulting probabilities from the CDF to ensure it returns the same x values. Verification

3 https://cran.r-project.org/web/packages/mc2d/index.html
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results for these three distributions are provided in Table 7 through Table 12. In each case, Numerics has
perfect agreement with the R ‘mc2d’ package. Example code for replicating these distribution tests with
R ‘mc2d’ is provided in Figure 6 below.

Table 7 - Verification of the CDF of the Generalized Beta distribution.

X Values R ‘mc2d’ Numerics % Difference
0.10 0.271000 0.271000
0.25 0.578125 0.578125
0.50 0.875000 0.875000
0.75 0.984375 0.984375
0.90 0.999000 0.999000

Table 8 - Verification of the inverse CDF of the Generalized Beta distribution.

P Values R ‘mc2d’ Numerics % Difference
0.271000 0.10 0.10
0.578125 0.25 0.25
0.875000 0.50 0.50
0.984375 0.75 0.75
0.999000 0.90 0.90

Table 9 - Verification of the CDF of the PERT distribution.

X Values R ‘mc2d’ Numerics % Difference
0.10 0.0814600 0.0814600
0.25 0.3671875 0.3671875
0.50 0.8125000 0.8125000
0.75 0.9843750 0.9843750
0.90 0.9995400 0.9995400

Table 10 - Verification of the inverse CDF of the PERT distribution.

P Values R ‘mc2d’ Numerics % Difference
0.0814600 0.10 0.10
0.3671875 0.25 0.25
0.8125000 0.50 0.50
0.9843750 0.75 0.75
0.9995400 0.90 0.90
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Table 11 - Verification of the CDF of the Triangular distribution.

X Values R ‘mc2d’ Numerics % Difference
0.10 0.0400000 0.0400000
0.25 0.2500000 0.2500000
0.50 0.6666667 0.6666667
0.75 0.9166667 0.9166667
0.90 0.9866667 0.9866667

Table 12 - Verification of the inverse CDF of the Triangular distribution.

P Values R ‘mc2d’ Numerics % Difference
0.0400000 0.10 0.10
0.2500000 0.25 0.25
0.6666667 0.50 0.50
0.9166667 0.75 0.75
0.9866667 0.90 0.90
library(mc2d)

# CDF of the Generalized Beta distribution

x=¢(0.1, 0.25, 0.5, 0.75, 0.9)

p = pbetagen(q = x, shapel = 1, shape2 =3, min =0, max =1)
#[1] 0.271000 0.578125 0.875000 0.984375 0.999000

# Inverse CDF of the Generalized,Beta
gbetagen(p = p, shapel =1, shape2 = 3, min =0, max = 1)
#[1] 0.10 0.25 0.50 0:75.0.90

# CDF of the PERT distribution
p = ppert(q = x, min =0, mode = 0.25, max = 1)
#[1] 0.0814600 0.3671875 0.8125000 0.9843750 0.9995400

# Inverse CDF of the PERT
gpert(p = p, min =0, mode = 0.25, max = 1)
#[1]0.100.250.500.750.90

# CDF of the Triangular distribution
p = ptriang(q = x, min = 0, mode = 0.25, max = 1)
#[1] 0.0400000 0.2500000 0.6666667 0.9166667 0.9866667

# Inverse CDF of the Triangular

gtriang(p = p, min =0, mode = 0.25, max =1)
#[1]0.100.250.500.75 0.90

Figure 6 — Example code for using probability distributions with the R ‘mc2d’ package.
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The Generalized Normal and Kappa-4 distributions were verified using the R ‘lmom’ package®. These
distributions are commonly used for flood frequency analysis [4]. In RMC-TotalRisk, they can be used
when creating a parametric hazard function. The CDF was evaluated at five different x values. Then, the
inverse CDF was evaluated by inputting the resulting probabilities from the CDF to ensure it returns the
same x values. Verification results for these distributions are provided in Table 13 through Table 16. In
each case, Numerics has perfect agreement with the R i/mom’ package. Example code for replicating
these distribution tests with R I/mom’ is provided in Figure 7 below.

Table 13 - Verification of the CDF of the Generalized Normal distribution.

X Values R ‘Imom’ Numerics
5 0.07465069 0.07465069
10 0.53400804 0.53400804
12 0.73775928 0.73775928
15 0.92073519 0.92073519
18 0.98333335 0.98333335

Table 14 - Verification of the inverse CDF of the Generalized Normal distribution.

% Difference

P Values R ‘iImom’ Numerics % Difference
0.07465069 5 5
0.53400804 10 10
0.73775928 12 12
0.92073519 15 15
0.98333335 18 18
Table 15 - Verification of the CDF of the Kappa-4 distribution.
X Values R ‘Imom’ Numerics % Difference
5 0.07168831 0.07168831
10 0.53317660 0.53317660
12 0.73279234 0.73279234
15 0.91293987 0.91293987
18 0.97980084 0.97980084
Table 16 - Verification of the inverse CDF of the Kapp-4 distribution.
P Values R ‘iImom’ Numerics % Difference
0.07168831 5 5
0.53317660 10 10
0.73279234 12 12
0.91293987 15 15
0.97980084 18 18

4 https://cran.r-project.org/web/packages/Imom/index.html
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library(lImom)

# CDF of the Generalized Normal (GNO) distribution

x = c(5, 10, 12, 15, 18)

p = cdfgno(x = x, para =¢(9.7, 3.5, -0.1))

#[1] 0.07465069 0.53400804 0.73775928 0.92073519 0.98333335

# Inverse CDF of the GNO

# This should return the x values used with the CDF
qguagno(f = p, para=c¢(9.7, 3.5, -0.1))

#[1] 510121518

# CDF of the Kappa-4 (K4) distribution
p = cdfkap(x = x, para =¢(8.7, 3.1, 0.14, -0.1))
#0.07168831 0.53317660 0.73279234 0.91293987 0.97980084

# Inverse CDF of the K4
quakap(f = p, para=c(8.7, 3.1, 0.14, -0.1))
#[1] 510121518

Figure 7 — Example code for using probability distributions with the R lmom’”package.

Finally, the Truncated Normal and Uniform distributions were verified using the R ‘truncnorm’ and R
‘stats’ package®, respectively. Both distributions are bounded by lower and upper bounds. In RMC-
TotalRisk, these distributions will commonly be used to represent uncertainty in a response probability,
so they will be bounded between 0.and 1. Verification results for these distributions are provided in
Table 17 through Table 20. In each case, Numerics has perfect agreement with the R packages. Example
code for replicating these distribution tests with R is provided in Figure 8 below.

Table 17 - Verification of the CDF of the Truncated Normal distribution.

X Values R ‘truncnorm’ Numerics % Difference
0.10 0.1341936 0.1341936
0.25 0.3761035 0.3761035
0.50 0.7522070 0.7522070
0.75 0.9474634 0.9474634
0.90 0.9887291 0.9887291
Table 18 - Verification of the inverse CDF of the Truncated Normal distribution.
P Values R ‘truncnorm’ Numerics % Difference
0.1341936 0.10 0.10
0.3761035 0.25 0.25
0.7522070 0.50 0.50
0.9474634 0.75 0.75
0.9887291 0.90 0.90

5 https://cran.r-project.org/web/packages/truncnorm/index.html
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Table 19 - Verification of the CDF of the Uniform distribution.

X Values R ‘stats’ Numerics % Difference
0.10 0.10 0.10
0.25 0.25 0.25
0.50 0.50 0.50
0.75 0.75 0.75
0.90 0.90 0.90

Table 20 - Verification of the inverse CDF of the Uniform distribution.

P Values R ‘stats’ Numerics % Difference
0.10 0.10 0.10
0.25 0.25 0.25
0.50 0.50 0.50
0.75 0.75 0.75
0.90 0.90 0.90
library(truncnorm)

# CDF of the Truncated Normal distribution

x=¢(0.1, 0.25, 0.5, 0.75, 0.9)

p = ptruncnorm(q=x,a=0, b=1, mean =0.25, sd = 0.3)
#[1] 0.1341936 0.3761035 0.7522070 0.9474634 0.9887291

# Inverse CDF of the Truncated Normal
gtruncnorm(p=p,a=0,b =1, mean=0.25, sd =0.3)
#[1] 0.100.25 0.50 0.75.0.90

library(stats)

# CDF of the Uniform distribution
x=¢(0.1, 0.25, 0.5, 0.75, 0.9)
p = punif(q = x, min =0, max = 1)
#[1] 0.100.250.500.75 0.90

# Inverse CDF of the Uniform
qgunif(p = p, min =0, max = 1)
#[1]0.100.250.500.75 0.90

Figure 8 — Example code for using probability distributions with the R ‘truncnorm’ and ‘stats’ packages.
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Numerical Integration

In RMC-TotalRisk, within every Monte Carlo realization for every system component, risk is computed
using numerical integration. In the technical reference manual [2], risk is formally defined as the
expected value of consequences E[C], which is calculated as:

E[C] = f C(x) f(C(x)) - dx Equation 6

where x is the hazard level (e.g., flood discharge or water level); C(x) determines the consequences,
such as property damage or life loss, for the hazard level x; and f(C(x)) is the probability density
function (PDF) of the consequences occurring.

Computing risk for multiple system components requires integration over a multidimensional integral.
Consider a system with two components, where the consequences of failure from each component are
additive. Following the general risk formula provided in Equation 6, the system risk becomes a two-
dimensional integral:

oo oo

E[Clq = f f{CX(x) + Cy ()} 'fXY(CX(x); Cy(y)) - dx - dy Equation 7

—00 —00

where x is the hazard level for system component X; Cy (x) determines the consequences for the
hazard level x; y is the hazard level for system component Y; Cy (y) determines the consequences for
the hazard level y; and fyy (Cx(x), Cy(3)) is the joint PDF of the combined system consequences
occurring.

Single Dimension Integration

In RMC-TotalRisk, single dimension integrals like Equation 6 are solved using an implementation of the
Adaptive Simpson’s Rule (ASR) method. The ASR algorithm subdivides the interval of integration in a
recursive manner until a user-defined tolerance is achieved. The default tolerance level is 1e~8. More
details are provided in [2] and [5].

The numerical integration functionality in RMC-TotalRisk is contained within Numerics. Verification of
the numerical integration was performed using six analytical example problems of varying complexity
with known solutions. The goal of each verification test is to approximate the definite integral:

Equation 8

b
I=ff(x)-dx

The first example is a simple function with a single variable:
Equation 9

fx) =x3

Integrating froma = 0 to b = 1, the exact solution is:

23



1

1 1 .
Jf(x)dx=1x4 (1):1-14_0=0.25 Equation 10
0

The ASR method will give exact results for 3™ degree (or less) polynomials. The ASR method required

only 5 function evaluations to converge with a standard error of 0.

Table 21 - Numerical integral results for example 1.

Exact Solution Numerics % Difference
0.25 0.25

The next example integrates the following function:

f(x) =cosx Equation 11

froma = —1to b = 1. The exact integral is:

1
ff(x) dx = sinx _11 = 2sin1 =1.6829419 ... Equation 12
-1

The ASR method required 65 function evaluations to converge with a standard error < 1e~”’.

Table 22 - Numerical integral results for example 2.
Exact Solution Numerics % Difference
1.6829419 1.6829419

The next example integrates:

f(x) =05+ 24x + 3x2 Equation 13

froma = 0 to b = 2. The exact integral is:

2
ff(x) dx = (0.5x + 12x% + x3) |(2) =(05-2+12-22+23)—0 =57 Fquation 14
0

The ASR method required 5 function evaluations to converge with a standard error of 0.

Table 23 - Numerical integral results for example 3.

Exact Solution Numerics % Difference
57 57

The next example integrates:
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f(x) = 0.5+ 24x + 3x? + 8x3 Equation 15

froma = 0 to b = 2. The exact integral is:

2
ff(x) dx = (0.5 + 12x% + x3 + 2x%) (2) =(05-2+12-22+23+2-2%)—0 = 89 Equation 16
0
The ASR method required 5 function evaluations to converge with a standard error of 0.
Table 24 - Numerical integral results for example 4.
Exact Solution Numerics % Difference
89 89 " 0.0%

The next two examples are more relevant for computations with RMC-TotalRisk. In the next example,
the goal is to compute the mean of a Gamma distribution with a scale of 8 = 10 and shape of k = 5,
which is simply 8 - k = 50. The function to integrate is:

oo
§= IE[X] — f X f(x) - dx Equation 17
—0o0
1 X Equation 18
x) = x¥"te 0
f(x) NOIE
The ASR method required 393 function evaluations to converge with a standard error < 1e~°.
Table 25 - Numerical integral results for example 5.
Exact Solution Numerics % Difference

50 50 0.0%

The final example for single dimension integration is to compute the conditional expected value of a Ln-
Normal distribution with a real-space mean of u, = 10 and standard deviation g, = 2. The
corresponding log-space mean and standard deviation are u = 2.282975 and o = 0.198042. For more
details on the Ln-Normal distribution, please see the technical reference manual [2].

A conditional expectation is defined as the expected value of a random variable given that this value lies
within some prescribed probability range [6]:

E[X|X = B] = 1_;%{ x - f(x)-dx Equation 19
B

where f(-) is the PDF; and F(*) is the CDF.
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where f(-) is the PDF; and F (%) is the CDF. The threshold value 8 can be defined by a specified
nonexceedance probability , such as @ = 0.99, rather than a threshold value, . In this case, f =
F~1(a). The exact solution for the expectation of a Ln-Normal distribution conditioned on X > f is
provided by:

a? )
Ut Equation 20

(1-@(@ (a) —0))

E[X|X2ﬁ]=i_a

where ®(+) is the CDF of the standard Normal distribution; ®~1(+) is the inverse CDF; and u and o are
the log-space mean and standard deviation, respectively.

The ASR method required 89 function evaluations to converge with a standard error < 1e~°.
Table 26 - Numerical integral results for example 6.
Exact Solution Numerics % Difference
16.65587 16.65587 0.0%

Additional verification was performed using the R ‘stats’ package. Example code for replicating these
three example problems with R ‘stats’is provided in Figure 9 below. In each case, RMC-TotalRisk
produced the same results as the R ‘stats’ package. The package reports the absolute error, which is
approximately the same as the square of the standard error reported by the Numerics ASR method.

Multidimensional Integration

Solving multidimensional integrals is computationally demanding. If traditional, nonadaptive numerical
integration techniques were used, the solution would require K iterations, where K is the number of
integration steps (or bins) and D is the number of dimensions. If there were 100 integration steps and 5
dimensions, the solution would need 10 billion iterations. To avoid these computational limitations,
RMC-TotalRisk uses an adaptive importance sampling algorithm called VEGAS [7] [8]. More details on
this method can be found in [1], [2], and [9].

The VEGAS algorithm implemented in RMC-TotalRisk has two steps. First, to establish and refine the
importance sampling histogram, by default the routine performs five warmup cycles, each with a
maximum of 1,000 - D integrand evaluations. For instance, if D = 2, by default there are 10,000 total
warmup evaluations. Next, again by default, 10,000 final integrand evaluations are performed. The
solution and resulting standard error are based only on the final evaluations. The user can add more
function evaluations to achieve a smaller standard error.

Verification of the multidimensional integration was performed using four analytical example problems
of varying complexity with known solutions. The goal of each verification test is to approximate the
definite integral:

by bp
Equation 21
I: j “ee j f(xl,...,xD)-dxl...de q
ai ap
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The first example is a simple 2-dimensional problem for computing m:

1, x% + y2 <1 Equation 22
feey) _{0, 2+y?>1

Integrating from a = {—1,—1}to b = {1, 1}, the exact solution is m = 3.141593 ....

library(stats)

# Example 1

fx1 = function(x){return(x”3)}

integrate(f = fx1, lower = 0, upper = 1, rel.tol = 1E-8)
# 0.25 with absolute error < 2.8e-15

# Example 2

fx2 = function(x){return(cos(x))}

integrate(f = fx2, lower = -1, upper = 1, rel.tol = 1E-8)
# 1.682942 with absolute error < 1.9e-14

# Example 3

fx3 = function(x){return(0.5 + 24 * x + 3 * x * x)}
integrate(f = fx3, lower = 0, upper = 2, rel.tol = 1E-8)
# 57 with absolute error < 6.3e-13

# Example 4

fx4 = function(x){return(0.5+24 * x+3 * x * x + 8 * x * x * x)}
integrate(f = fx4, lower = 0, upper = 2, rel.tol = 1E-8)

# 89 with absolute error < 9.9e-13

# Example 5

fx5 = function(x){return(x*dgamma(x=x, shape = 10, scale=5))}

integrate(f = fx5, lower = ggamma(p=1E-16, shape = 10, scale = 5), upper = ggamma(p=1-1E-16, shape
=10, scale = 5), rel.tol = 1E-8)

# 50 with absolute error < 1e-10

# Example 6

# Get log parameters

mu = 10; sigma = 2; var = sigma”2

Imu = log(mu”2 / sgrt(var + mu”2))

Isigma = sqrt(log(1.0 + var / mu”*2))

fx6 = function(x){return(x*dinorm(x=x, meanlog = Imu, sdlog = Isigma))}

I=integrate(f = fx6, lower = glnorm(p=0.99, meanlog = Imu, sdlog = Isigma), upper = glnorm(p=1-1E-
16, meanlog = Imu, sdlog = Isigma), rel.tol = 1E-8)

ISvalue / (1 - 0.99)

#[1] 16.65587

Figure 9 — Example code for performing numerical integration for a single dimension with the R ‘stats’ package.
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Table 27 shows the VEGAS results for this first example. Since VEGAS is an advanced Monte Carlo
integration method, the results are approximate in nature. The precision can be assess using the
standard error of result (more details are provided in [1], [7] and [8]). The standard error of the VEGAS
solution is ¢ = 0.004019 and the 90% confidence interval around the result is provided in parentheses.
The exact solution is contained within this interval.

Table 27 - VEGAS results for example 1.

Exact Solution

Numerics

% Difference

3.141593

3.141074
(3.134463, 3.147684)

0.0%

The next problem follows the example provided in by the GNU Scientific Library®. The example is a 3-
dimensional integral from the theory of random walks:

1

f(x y Z) — Equation 23
Y m3[1 — cos(x) - cos(y) - cos(z)]
Integrating from a = {0, 0,0} to b = {m, m, }, the exact solution.is given by:
4
r (%) Equation 24
= 1.393204 ...
473

where I'(*) is the Gamma function. The VEGAS results are provided in Table 28. The standard error is
o = 0.007161 and the 90% confidence interval around the result is provided in parentheses. The exact
solution is contained within this interval.

Table 28 - VEGAS results for example 2.

Exact Solution Numerics % Difference
1.389101 0
1.393204 (1.37732, 1.400881) Lk

The remaining two examples are more relevant for system risk computations with RMC-TotalRisk. The
goal is to compute the mean of the sum of independent Normal distributions for 5-dimensions and 20-
dimensions. A listing of the mean and standard deviations of the Normal distributions are provided in
Table 29 below. The multidimensional function to integrate is as follows:

D D
Equation 25
[y, xp) = Z Xy * Hﬁb(kakﬁk)
= k=1

k=1

where ¢ (*) is the PDF of the k-th Normal distribution with a mean u; and standard deviation g;. The
integration limits are a = {®~1(1e~1%|uy, 07), -+, P~ 1 (1e 8| up,0p)}and b = {d~1(1 —

6 https://www.gnu.org/software/gsl/doc/html/montecarlo.html
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1e 1%y, 00), -, @7 1(1 — 1e7 8| up, 0p)}, where ®@~1(+) is the inverse CDF of the k-th Normal
distribution. In other words, the integration limits cover the full probability domain from ~0 to ~1. The
exact solution to the mean of the sum of Normally distributed random variables is:

D
E[X] = Z iy Equation 26
k=1

So, the mean of the sum of the first five distributions is:

E[X] =10+30+ 17 +99 + 68 = 224 Equation 27

The exact solution to the sum of all twenty distributions is 837.

Table 29 - Normal distribution mean and standard deviations.

Distribution Mean, u Std. Deviation, o
1 10 2
2 30 15
3 17 5
4 99 14
5 68 7
6 26 24
7 35 29
8 55 22
9 13 22
10 59 1
11 12 3
12 28 28
13 49 19
14 54 18
15 20 4
16 47 24
17 12 23
18 76 26
19 70 26
20 57 19
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The VEGAS results are provided in Table 30 and Table 31, and the standard errors are 0 = 0.027803
and 0.097398, respectively. In both cases, the exact solution is contained within the 90% confidence
interval.

Table 30 - VEGAS results for example 3.

Exact Solution Numerics 9% Difference
223.984867 .
224 (223.939135, 224.030599) 0.0%

Table 31 - VEGAS results for example 4.

Exact Solution Numerics % Difference
836.965827
837 .09
(836.805622, 837.126033) ' B

RMC-TotalRisk permits an unlimited number of failure modes per system component. However, a single
system is limited to 20 components due to virtual memory and computer runtime limitations. Therefore,
the 20-dimension verification test shown above provides a stress test to the TotalRisk computation
engine. The VEGAS method used in RMC-TotalRisk is capable of accurately estimating high-dimensional
integrals.

An additional verification was performed using the R ‘cubature’ package’. Example code for replicating
the 5-dimension example problem is provided in Figure 10 below. RMC-TotalRisk produced more
accurate results than the R ‘cubature’ package while requiring fewer function evaluations, which
indicates that the VEGAS implementation in Numerics is efficient and robust.

7 https://cran.r-project.org/web/packages/cubature/index.html
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library(cubature)

# Array of distribution mean and standard deviations
mu = ¢(10, 30, 17, 99, 68)
sigma =c(2, 15, 5, 14, 7)

# Computes the mean of the sum of independent Normal distributions
sumNormal = function(x){

sum=0
prod =1
for (iin 1:5){

sum =sum + X[i]
prod = prod * dnorm(x = x[i], mean = mu[i], sd = sigmali])
}

return(sum*prod)

}

# Get integration limits

lower = numeric(5)

upper = numeric(5)

for (i in 1:5){
lower[i] = gnorm(p = 1E-16, mean = muli], sd = sigmali])
upper[i] = gnorm(p = 1 - 1E-16, mean = mul[i], sd = sigmalil)

}

# Perform integration

vegas(sumNormal, lowerLimit = lower, upperLimit = upper, flags=list(verbose=0, final=1))

# Sintegral
#1] 223.9502
# Serror

#[1] 0.4381816
# Sneval

#[1] 1007500

Figure 10 — Example code for performing numerical integration for multidimensions with the R ‘stats’ package.
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Numerical Differentiation

In RMC-TotalRisk, a derivative-based sensitivity analysis is provided for the event tree and risk analysis
components of the software. The partial derivative measures how sensitive an output component f is
with respect to an input parameter 8; when all other input parameters are held fixed.

af Equation 28
— (i=12 -
26, (i ,2,000, M)

In RMC-TotalRisk, the partial derivatives are evaluated using numerical differentiation with the two-
point formula:

g _ f(9 +h) — f(@ —h) Equation 29
96 2h

where h represents a small change in 6. The step size value h is automatically determined according to
the magnitude of the function input parameter:

_ |x| "€ x 0 Equation 30

1

EJ

h 1
€2, x=0

Where x is the input parameter; and € is the double precision machine epsilon.

The numerical derivative functionality in RMC-TotalRisk is contained within Numerics. Verification of the
numerical differentiation was performed using three analytical functions with known solutions. The first
example is a simple function with a single variable:

fx) = x3 Equation 31
Differentiating with respect to x gives the following:

o _

p 3x2 Equation 32
X

Evaluating the function at x = 2, yields a derivative equal to 12:

d Equation 33
—f =3-22=12
0x

Table 32 - Numerical derivative results for example 1.

Derivative Exact Solution Numerics % Difference

of /ox 12.00 12.00 0.0%
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The second example is a function with two variables:

fl,y) = xz}’?’ Equation 34

Differentiating with respect to each variable gives:

af

- = 2xy3 Equation 35
d0x Xy

ad Equation 36
J_ 3x2%y?

dy

Evaluating the function at x = 2 and y = 2, yields partial derivatives equal to 32 and 48, respectively:

g =2-2-23=132 Equation 37
dx

ad Equation 38
—f=3'22'22 = 48

dy

Table 33 - Numerical derivative results for example 2.

Derivative Exact Solution Numerics % Difference
of /ox 32.00 32.00
af /oy 48.00 48.00

The third example is a function with three variables:

flx,y,z) = x3 + y4 + z5 Equation 39

Differentiating with respect to each variable gives:

% = 3x2 Equation 40
af _ 43 Equation 41
dy y
af 4 Equation 42
5 =5z
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Evaluating the function at x = 2, y = 2 and z = 2, yields partial derivatives equal to 12, 32, and 80,
respectively:

ﬂ =3-22=12 Equation 43
dx

g =4-23=32 Equation 44
dy

4 Equation 45
Y _5.2% =30

0z

Table 34 - Numerical derivative results for example 3.

Derivative Exact Solution Numerics % Difference
of /0x 12.00 12.00
af /oy 32.00 32.00
dof /0z 80.00 80.00

In each case, Numerics and RMC-TotalRisk produced the correct solution with an absolute error of
approximately +1e~8. Additional verification was performed using the R ‘numDeriv’ package®. Example
code for replicating these three example problems with R ‘numDeriv’ is provided in Figure 11 below. In
each case, RMC-TotalRisk produced the same results as the R ‘numDeriv’ package.

8 https://cran.r-project.org/web/packages/numDeriv/index.htm
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library(numDeriv)

# Example 1 - One variable function
fx = function(x){
return(x”3)

}

# The grad function returns the partial derivatives with respect to each input
grad(func=fx, x=2)
#[1] 12

# Example 2 - Two variable function
fxy = function(p){

x=p[1]

y =pl2]

return(x"2*yA3)
}

grad(func=fxy, x=c(2,2))
#[1] 32 48

# Example 3 - Three variable function
fxyz = function(p){

x=p[1]

y =pl2]

z=p[3]

return(x"3+y~4+z75)

}

grad(func=fxyz, x=c(2,2,2))
#11] 12 32 80

Figure 11 — Example code for performing numerical differentiation with the R ‘numDeriv’ package.
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Linear Regression

In the risk analysis component of RMC-TotalRisk, it is challenging to compute the partial derivatives of
the output with respect to each input. Instead, the sensitivity index is derived from a linear regression of
inputs and output from a Monte Carlo simulation. For each Monte Carlo realization, the sampled inputs
6 and the resulting output y are stored in a matrix. Then, a multiple linear regression is estimated as:

n
Equation 46
y = Z Bib; + ¢
i=1

where the regression coefficient 8; measures the effect that input 8; has on the predicted value y; and ¢
is the model error, or residual.

The linear regression functionality in RMC-TotalRisk is contained within Numerics. Verification of the
linear regression was performed using the R ‘stats’ package. The regression example uses the ‘uschange’
dataset from the R fpp2’ package® [10], which provides growth rates of personal consumption and
personal income in the USA.

The first verification test is just a simple linear equation that models consumption as a function of
income. The next test models consumption as a function of income, production, savings, and the
unemployment rate for the US. Results are provided in Table 35 and Table 36, respectively. The
regression results from Numerics have perfect agreement with the R ‘stats’ package. Example code for
performing linear regression in R is provided in Figure 12 below.

Table 35 - Verification results for linear regression for-a simple linear model.

Coefficients R ‘stats’ Numerics % Difference
Intercept 0.54510 0.54510
Income 0.28060 0.28060
Standard Error 0.60261 0.60261

Table 36 - Verification results forlinear regression for a linear model with multiple covariates.

Coefficients R ‘stats’ Numerics % Difference
Intercept 0.26729 0.26729
Income 0.71449 0.71449
Production 0.04589 0.04589
Savings -0.04527 -0.04527
Unemployment -0.20477 -0.20477
Standard Error 0.32860 0.32860

9 https://cran.r-project.org/web/packages/fpp2/index.html

36


https://cran.r-project.org/web/packages/fpp2/index.html

library(fpp2)
library(stats)

# The first example is a simple linear regression
simpleLM = Im(formula = Consumption ~ Income, data = uschange)
summary(simpleLM)

# Residuals:

# Min 1Q Median 3Q Max

#-2.40845 -0.31816 0.02558 0.29978 1.45157

#

# Coefficients:

# Estimate Std. Error t value Pr(>|t|)

# (Intercept) 0.54510 0.05569 9.789 < 2e-16 ***
#Income  0.28060 0.04744 5.915 1.58e-08 ***

H#---

# Signif. codes: 0 “*** 0.001 “***’ 0.01 “*” 0.05°"0.1°"1

#

# Residual standard error: 0.6026 on 185 degrees of freedom
# Multiple R-squared: 0.159, Adjusted R-squared: 0.1545
# F-statistic: 34.98 on 1 and 185 DF, p-value: 1.577e-08

# The next example is a multiple linear regression

multipleLM = Im(formula = Consumption ~ Income + Production + Savings + Unemployment, data =
uschange)

summary(multipleLM)

# Residuals:

# Min 1Q Median 3Q Max
#-0.88296 -0.17638 -0.03679 0.15251 1.20553

#

# Coefficients:

# Estimate Std. Error t value Pr(>|t|)

# (Intercept) 0.26729 0.03721 7.184 1.68e-11 ***
#Income 0.71449 0.04219 16.934 < 2e-16 ***
# Production 0.04589 0.02588 1.773 0.0778.

# Savings -0.04527 0.00278 -16.287 < 2e-16 ***
# Unemployment -0.20477 0.10550 -1.941 0.0538.

# —

# Signif. codes: 0 “*** 0.001 ‘“**/ 0.01 ‘*’ 0.05°‘”0.1°"1
#

# Residual standard error: 0.3286 on 182 degrees of freedom
# Multiple R-squared: 0.754, Adjusted R-squared: 0.7486
# F-statistic: 139.5 on 4 and 182 DF, p-value: < 2.2e-16

Figure 12 — Example code for performing linear regression with the R ‘stats’ package.
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Verification of Input Functions

RMC-TotalRisk has the following key model inputs: 1) hazard functions; 2) transform function; 3) system
response functions; and 4) consequence functions. The input functions can be defined with parametric
or nonparametric methods.

Most of the parametric input functions use parametric probability distributions, which were already
verified in the previous section. Most of the nonparametric functions rely on linear interpolation, which
was also verified in the previous section. The following sections describe the additional input function
components that required further verification.

Parametric Bootstrap

In RMC-TotalRisk, the hazard and response functions can be defined as either a parametric or
nonparametric distribution. The parametric bootstrap [11] [12] is used to quantify uncertainty in the
parametric distributions. The bootstrap procedure involves the following general steps:

1. Randomly sample n values from the user-defined probability distribution, or parent distribution,
where n is equal to the effective record length (ERL). This is called the bootstrap sample.

2. Estimate a new distribution from the bootstrap sample. The distribution can be estimated with
product moments, linear moments, or maximum likelihood. See [4], [13], and [14] for more
details on these estimation and fitting methods for distributions.

3. Record quantiles for desired nonexceedance probabilities, and any other output of interest.

4. Repeat steps 1 through 3 for a sufficiently large number of realizations, R. Then, derive
confidence intervals by computing percentiles from the bootstrapped array for the desired
output.

More details on how the parametric bootstrap is used in RMC-TotalRisk can be found in the technical
reference manual [2]. The parametric bootstrap analysis and resulting confidence intervals were verified
using the R ‘boot’ package'® for a Log-Normal (base 10) distribution. Figure 13 shows the input options
for an example Log-Normal parametric hazard function. The distribution has a mean (of log) of 3.0 and
standard deviation (of log) of 0.5, and the ERL is 100. The bootstrap was performed using 10,000
realizations, and the 90% confidence interval was output for each user-defined exceedance probability.

Figure 14 shows a frequency curve plot comparing the bootstrap confidence interval results from RMC-
TotalRisk to the R ‘boot’ package. Table 37 lists the confidence interval results and the percent
difference between the two software programs. It is clear from these results that RMC-TotalRisk
produces effectively identical confidence intervals to those of R ‘boot’. Any differences in results are due
to minor differences that arise from pseudo-random number generators and Monte Carlo sampling
errors. Example code for replicating this example with R ‘boot’ is provided in Figure 15 below.

10 https://cran.r-project.org/web/packages/boot/index.html
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Properties * 0 X Properties = QX
General Options General Options
4 PARAMETRIC HATARD PROPERTIES # BOOTSTRAF OFTIONS
Mame Example Log-Normal Estimation Method Product Moments -
Description Confidence Interval W% l
Crasted On 11/25/2022 L1057 AM Realizations 10000 u
Last Modified 11/25/2022 %1057 AM PRMG Seed 12345
Hazard Type — " F 1|2 prosasiuy oRpmATES
Hazard Wnits cfs * | Wmaa| m A
4 DISTRIBUTION Probability Ovdinates
|5 Uncertain el 1606
Effective Record Length 129 =
SE-06
Distribution Log-Meonmal N 1E-08
Farameter Value 205
Mean {of leg) [u) 3 SE-05
Sad D (ol log) (e) 0.5 0,0001
b Compute 0.0002
nanne

Figure 13 - RMC-TotalRisk inputs for a Log-Normal (base 10) parametric hazard function.

Log-Normal Distribution

1,000,000

100,000

10,000

1,000

Flow (CFS)

100

Normal Probability Haper

10
0.99 0.9 0.5 0.1 0.01 0.001 1E-4 1E-5 1E-6 1E-7

Annual Exceedance Probability

-------- TotalRisk - 95% Cl «eeeeeeee TotalRisk - 5% Cl — . = TotalRisk - Mean TotalRisk - Computed B R-95%Cl B R-5%C

Figure 14 - Comparison of RMC-TotalRisk with R ‘boot’ confidence intervals for the Log-Normal (base 10) distribution.
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Table 37 - Comparison of RMC-TotalRisk with R 'boot' confidence intervals for the Log-Normal (base 10) distribution. Quantile
results are shown in log (base 10) space.

5% - Cl 95% - Cl
AEP , , RMC- % p , RMC- %
R ‘boot TotalRisk Difference R ‘boot TotalRisk Difference
1.0E-06 5.664 5.665 5.088 5.092
2.0E-06 5.585 5.586 5.025 5.029
5.0E-06 5.477 5.478 4.938 4.943
1.0E-05 5.392 5.394 4.871 4.875
2.0E-05 5.304 5.308 4.801 4.805
5.0E-05 5.184 5.187 4.705 4.710
1.0E-04 5.088 5.092 4.628 4.633
2.0E-04 4.989 4.992 4.549 4.552
5.0E-04 4.851 4.854 4.437 4.440
1.0E-03 4.741 4.743 4.346 4.350
2.0E-03 4.624 4.626 4.252 4.255
5.0E-03 4.458 4.458 4.116 4.118
1.0E-02 4.320 4.321 4.004 4.005
2.0E-02 4.170 4171 3.881 3.882
5.0E-02 3.946 3.948 3.695 3.696
1.0E-01 3.749 3.752 3.528 3.529
2.0E-01 3.515 3.517 3.323 3.325
3.0E-01 3.349 3.350 3.171 3.173
5.0E-01 3.082 3.083 2.917 2.915
7.0E-01 2.826 2.826 2.650 2.649
8.0E-01 2.676 2.676 2.483 2.483
9.0E-01 2.472 2.470 2.248 2.248
9.5E-01 2.306 2.302 2.051 2.051
9.8E-01 2.120 2.117 1.828 1.827
9.9E-01 1.998 1.994 1.679 1.678
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library(boot)

# This is example code for performing the parametric bootstrap in R. This example estimates 90%
confidence intervals for a Log-Normal distribution (base 10).

# First define the AEP values for computing the curve and confidence intervals.
AEPs = ¢(0.000001, 0.000002, 0.000005, 0.00001, 0.00002, 0.00005, 0.0001, 0.0002, 0.0005, 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7,0.8, 0.9, 0.95, 0.98, 0.99)

# Define the parent distribution parameters.
pMu =3.0

pSigma = 0.5

ERL =100

# Define a dummy vector of data
pData = rnorm(n=ERL, mean = pMu, sd = pSigma)

# This function returns the bootstrap sample for each bootstraptealization.

bootSample = function(data, parms){
# The ‘data’ and ‘parms’ inputs are required by the package.They are not used for this example.
return(rnorm(n=ERL, mean = pMu, sd = pSigma))

}

# This function returns the bootstrapped vector of the AEPs given the bootstrapped sample.
bootAEPs = function(data){

# Estimate new bootstrapped parameters from the bootstrap sample using product moments.

bMu = mean(data)

bSigma = sd(data)

bAEPs = numeric(length(AEPs))

for (i in 1:length(AEPs)){

bAEPs[i] = gnorm(p = 1-AEPs[i], mean = bMu, sd = bSigma)
}
return(bAEPs)

}

# Perform the parametric bootstrap
bootstrap = boot(data = pData, ran.gen = bootSample, statistic = bootAEPs, R =10000, sim =
"parametric")

# Estimate the confidence interval for each AEP using the percentile method
Cls = matrix(nrow = length(AEPs), ncol=2)
for (i in 1:length(AEPs)){
Cls[i,] = 10~boot.ci(boot.out = bootstrap, conf = 0.9, type = "perc", index = i)Spercent[4:5]

}

Figure 15 — Example code for performing the parametric bootstrap with the R ‘boot’ package.
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Nonparametric Hazard Function

In RMC-TotalRisk, a nonparametric hazard function can be defined in the same way as the “less simple
method” in the flood damage reduction analysis software, HEC-FDA [15]. This type of hazard function is
intended to provide backwards compatibility with existing HEC-FDA models for flood risk management
studies.

More details on the nonparametric hazard function can be found in the technical reference manual [2].
The nonparametric confidence intervals were verified using HEC-FDA version 1.4.3*1,

Verification was performed using the ‘Beargrass Creek’ example project provided in the HEC-FDA user
guide [15] and training course'?. The Beargrass Creek study used for that course consists of two highly
urbanized damage reaches on the South Fork of Beargrass Creek.

Figure 16 shows the RMC-TotalRisk input options for the South Fork 8 (SF-8) reach for the HEC-FDA
model. Figure 17 shows the same inputs with HEC-FDA.

#, SF-BWO BaseVr X

EoaslEEaEA
Exceedance Probability Flow Properties - 0 X
4 NONPARAMETRIC HAZARD PROPERTIES
X Value
MName SF-8 WO Base Yr
0,999 900
Description
o3 149 Created On T/18/2022 2:48:04 PM
= 2108 Last Modified 11/26/2022 11:22:45 AM
0.1 3119
Hazard Type Flow v 4
. 4
i 183 Hazard Units efs v 4
0.02 5036
0.01 6198 4 INTERPOLATION TRANSFORMS
Hazard Logarithmic -
0.004 . 7001 |
0.002 Ly 9610 Probability Normal Z-variate v
4 UNCERTAINTY OFTIONS
Effective Record Length 48
Extrapolation Probability 0.0001

Figure 16 - RMC-TotalRisk inputs for the SF-8 nonparametric hazard function.

" https://www.hec.usace.army.mil/software/hec-fda/
2 Flood Damage Assessment Course Content (army.mil)
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/% Bear Creek - Probability Function - T c o [=]
MName: SF-8 WO Base Yr

Description: Reach SF-8 Rm 9.253 W/O Project Base Year

- Water Surface Profile Type -

{® Discharge-Probability | [~ Transform Flow (Reg vs. Unreg}...l
(" Stage-Probability

— Graphical or Partial Duration Probability Function Ordinates ———————————

Exceedance Discharge ﬂ
Probability (cFs) Plot.. |
1 0.95000 900.00 Tabulate... |
2 050000 1489.00
3 0.20000 2106.00
4 0.10000 3119.00
5 0.04000 4183.00
6 0.02000 5036.00
7 0.01000 6198.00
8 R bocldb, Insert Row
< 0.00200 9610.00 7
:‘J > Delete Row

Equivalent Record Length (N): |43

Ve | Cancel |

Figure 17 - RMC-TotalRisk inputs for the SF-8 nonparametric hazard. function.

The uncertainty in the hazard level for a given exceedance probability is derived using the asymptotic
approximation for quantile variance. A detailed proof is provided in [16] and [17]. Additional details
related to the HEC-FDA implementation are provided in [15]. Details on the RMC-TotalRisk
implementation are provided in [2].

Figure 18 shows a frequency curve plot comparing confidence interval results from RMC-TotalRisk to the
HEC-FDA confidence intervals. Table 38 lists the confidence interval results and the percent difference
between the two software programs. RMC-TotalRisk produces confidence intervals that very closely
match HEC-FDA. The differences in results are primarily due to differences in linear interpolation choices
and differences in how RMC-TotalRisk computes the probability density of the nonparametric hazard
function. HEC-FDA interpolates several more points from the user-defined table before developing
confidence intervals. Whereas RMC-TotalRisk only uses the user-defined values. Results are primarily
different due to this design choice between software programs.
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Nonparametric Hazard Function
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Figure 18 - Comparison of RMC-TotalRisk with HEC-FDA confidence intervals for the nonparametric hazard function.

Table 38 - Comparison of RMC-TotalRisk with HEC-FDA confidence intervals for the nonparametric hazard function. Quantile
results are shown in log (base 10) space.

-2SD +2SD
AEP RMC- % RMC- %
HEC-FDA TotalRisk Difference HEC-FDA TotalRisk Difference
1.00E-04 4.216 4.248 0.8% 4.772 4.740 0.7%
2.00E-03 3.705 3.737 0.9% 4.261 4.229 0.7%
4.00E-03 3.567 3.599 0.9% 4.123 4.091 0.8%
1.00E-02 3.514 3.546 0.9% 4.070 4.038 0.8%
2.00E-02 3.474 3.456 0.5% 3.930 3.948 0.5%
4.00E-02 3.442 3.445 0.1% 3.801 3.798 0.1%
1.00E-01 3.328 3.336 0.2% 3.649 3.652 0.1%
2.00E-01 3.240 3.222 0.5% 3.448 3.424 0.7%
5.00E-01 3.142 3.136 0.2% 3.204 3.210 0.2%
9.99E-01 2.894 2.878 0.6% 3.014 3.030 0.5%
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Tabular Hazard Functions

For the tabular hazard function, the user is required to enter a tabular relationship of hazard levels and
exceedance probabilities. The user can choose to model the exceedance probabilities as uncertain while
holding the hazard levels as fixed, or vice versa. A distribution must be selected to define uncertainty.
The parameters for the selected distribution must be entered for every ordinate in the tabular data. The
uncertainty at each hazard level must be entered such that the confidence intervals are monotonically
increasing with increasing hazard levels.

All tabular (nonparametric) functions in RMC-TotalRisk use the same uncertainty analysis algorithm. In
short, for each Monte Carlo realization, a single percentile value (e.g., 0.9) is sampled at random. Every
ordinate in the tabular data is then sampled using the same percentile. This ensures each tabular
function in the Monte Carlo simulation is generated with monotonically increasing hazard levels. Please
see [2] for more details.

This uncertainty analysis approach is the same as the approach takenin HEC-FDA for graphical or non-
analytic relationships [15]. This algorithm is restrictive in terms of the possible shapes of the
nonparametric distribution that can be randomly generated, which could lead to a slight overestimation
or underestimation in the variance of the risk results. However, as discussed in [15], generalizing the
shape of the distribution requires a parametric representation. In the absence of a parametric shaping
component, this is currently the best algorithm available for nonparametric uncertainty analysis.

Verification of the tabular function uncertainty analysis was performed using the theoretical confidence
intervals for a Normal distribution, which are presented in [18]. The theoretical intervals are as follows:

1+ 0{) 1+ % CD‘l(p)Z Equation 47
Oy

xpicb_l( N

where x,, is the quantile for the desired nonexceedance probability p; gy is the standard deviation of the
Normal distribution; N is the effective record length; ®~1(-) is the inverse CDF of the standard Normal
distribution; and «a is the confidence interval width (e.g., 0.9).

Following the previous bootstrap example, the tabular hazard function was derived from a Log-Normal
distribution with a mean (of log) of 3.0 and standard deviation (of log) of 0.5, and an ERL of 100. Figure
19 shows how the tabular function data is input into RMC-TotalRisk. For this example, the data was
entered in log (base 10) space. The mean values (quantiles) were taken from the inverse CDF of the Log-
Normal distribution. The standard deviation (in log space) at each quantile is:

14+ 1 - ®~1(p)? Equation 48

2
N
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Figure 19 - RMC-TotalRisk inputs for the tabular hazard function.

The uncertainty analysis was performed using 10,000 Monte Carlo realizations, and the 90% confidence
interval was output for each user-defined exceedance probability. Figure 20 shows a frequency curve
plot comparison, and Table 39 lists the confidence interval results and the percent difference between
the theoretical result and the tabular hazard function. RMC-TotalRisk produces effectively identical
confidence intervals to the theoretical result from Equation 47. Any differences in results are due to
minor Monte Carlo sampling errors.
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Tabular Hazard Function
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Figure 20 - Comparison of the RMC-TotalRisk tabular hazard function with theoretical confidence intervals for the Log-Normal
(base 10) distribution
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Table 39 - Comparison of the RMC-TotalRisk tabular hazard function with theoretical confidence intervals for the Log-Normal
(base 10) distribution. Quantile results are shown in log (base 10) space.

5% - Cl 95% - Cl
AEP . RMC- % . RMC- %
Theoretical TotalRisk Difference Theoretical TotalRisk Difference

1.0E-06 5.0883 5.0913 5.6651 5.6662
2.0E-06 5.0252 5.0281 5.5862 5.5872
5.0E-06 4.9389 49416 5.4783 5.4793
1.0E-05 4.8711 4.8738 5.3937 5.3947
2.0E-05 4.8011 4.8037 5.3064 5.3073
5.0E-05 4.7046 4.7070 5.1860 5.1869
1.0E-04 4.6281 4.6305 5.0909 5.0917
2.0E-04 4.5484 4.5506 4.9917 4.9925
5.0E-04 4.4370 4.4391 4.8535 4.8543
1.0E-03 4.3475 4.3495 4.7428 4.7435
2.0E-03 4.2526 4.2545 4.6256 4.6262
5.0E-03 4.1170 4.1188 4.4588 4.4594
1.0E-02 4.0048 4.0065 4.3215 4.3221
2.0E-02 3.8819 3.8834 4.1719 4.1724
5.0E-02 3.6963 3.6976 3.9486 3.9490
1.0E-01 3.5298 3.5309 3.7518 3.7522
2.0E-01 3.3251 3.3261 3.5165 3.5169
3.0E-01 3.1745 3.1754 3.3499 3.3502
5.0E-01 2.9178 2.9186 3.0822 3.0825
7.0E-01 2.6501 2.6510 2.8255 2.8258
8.0E-01 2.4835 2.4845 2.6749 2.6752
9.0E-01 2.2482 2.2494 2.4702 2.4706
9.5E-01 2.0514 2.0527 2.3037 2.3042
9.8E-01 1.8281 1.8296 2.1181 2.1187
9.9E-01 1.6785 1.6801 1.9952 1.9957
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Event Tree Response Function

RMC-TotalRisk includes the ability to define a system response function using an event tree. Event tree
analysis (ETA) represents the logic of how an initiating event, like a flood or earthquake, can lead to
various types of damage and failure [19]. It is common practice to develop detailed event trees for
individual PFMs to clearly identify the full sequence of steps required to obtain failure or breach. Each
identified PFM is decomposed into a sequence of component events and conditions that must occur for
there to be a failure. More details on the event tree response function can be found in the technical
reference manual [2].

The event tree math is straightforward, requiring simple multiplication of node probabilities. However,
the event tree in RMC-TotalRisk provides comprehensive diagnostics and sensitivity analysis results,
which are more complex.

The event tree response function and sensitivity analysis results were verified using Palisade’s @Risk
software®®. Figure 21 provides an example of a simple event tree for a backwards erosion and piping
failure mode. Table 40 shows the event tree node probabilities for a single hazard level. Each node has a
Triangular distribution.

Breach

Unsuccessful
Intervention

Mo Breach

Progressicn

g : Intervention
Continuation

Mo
Progressicn

Initiation

Mo
Continuaticn

Hazard

Mo Initiation

Figure 21 - Example backwards erosion piping event tree.

13 https://www.palisade.com/risk/default.asp

49


https://www.palisade.com/risk/default.asp

Table 40 - Event tree node probabilities.

Node Min Most Likely Max
Initiation 0.5 0.8 1.0
Continuation 0.6 0.7 0.9
Progression 0.2 0.3 0.7
Unsuccessful Intervention 0.8 0.9 1.0
Breach 0.4 0.5 0.8

Figure 22 shows an example of the event tree diagnostics tab in RMC-TotalRisk. For this comparison,
10,000 Monte Carlo iterations were performed in both RMC-TotalRisk and Palisade’s @Risk®.

Table 41 provides a comparison of the summary statistics from the Monte Carlo simulation. Table 42
provides a comparison of the Pearson’s correlation coefficients, which describe the strength and
direction of an association between the simulated input and output variables in the event tree. Table 43
shows a comparison of the sensitivity indices, which is often referred to as the contribution to variance
[20]. This provides the fractional contribution of variance from the input to the total output variance.

The event tree analysis results from RMC-TotalRisk very closely match those from Palisade’s @Risk®.
Any differences in results are due to minor differences that arise from pseudo-random number
generators and Monte Carlo sampling errors.

5 Example 1 X

Event Tree Response  Diagnostics

Node Filters A
["] Show Remainder Modes

Combine Remainder Leaves Progression {‘r?
[] Leaf Modes Only &l
- re1
Maodel Parameters l'-h
10000 * Moente Carlo Iterations Breach +
30 v 'Hazard Level m
’ et
Plot Options #

() Event Likelihood Initiation

(@) Correlation to SRP
() Sensitivity Index
() Mode SRP Scatter
() Tabular

Continuation

Unsuccessful Intervention

Correlation Coefficient

Figure 22 - Example of even tree diagnostics tab in RMC-TotalRisk.
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Table 41 - Comparison of event tree response probability summary statistics.

Statistic Palisade’s @RIsk® RMC-TotalRisk % Difference
Mean 0.1147 0.1148
Std. Deviation 0.0409 0.0412 0.7%
5% %-ile 0.0609 0.0614 0.9%
50" %-ile 0.1074 0.1074
95t %-ile 0.1917 0.1920

Table 42 - Comparison of event tree node correlation coefficients.

Node Palisade’s @RIsk® RMC-TotalRisk
Initiation 0.37 0.37
Continuation 0.24 0.24
Progression 0.76 0.76
Unsuccessful Intervention 0.13 0.13
Breach 0.43 0.43

Table 43 - Comparison of event tree node contribution to variance.

% Difference

Node Palisade’s @RIsk® RMC-TotalRisk Difference
Initiation 14.3% 13.7% 0.6%
Continuation 5.7% 5.5%
Progression 56.7% 56.9%
Unsuccessful Intervention 1.5% 1.6%
Breach 18.1% 17.3% 0.8%

51




Composite Hazard and Response Functions
In RMC-TotalRisk, a composite hazard or response function can be created by assignhing weights (or
likelihoods) to a list of functions as follows:

Equation 49

FO) = ) o F ()
i=1

where F;(+) is the CDF for function i; and w; is the weight or likelihood of function i, with 0 < w; < 1
and Y,i-; w; = 1. This type of composite function is traditionally referred to as a mixture distribution
[21].

In dam safety, it is common practice to evaluate various gate failure or debris blockage scenarios as
separate analyses, and then assign a likelihood to each scenario. Similarly, a system response function
might be a function of multiple hazard scenarios. The joint probability of the various hazards can be
accounted for using weights (or likelihoods) for discrete hazard bins.

For more details on the computation and algorithmic aspects of the composite hazard and response
functions, please refer to the technical reference manual [2]. The composite hazard and response
functions and resulting confidence intervals were verified using the R ‘mistr’ package* for a mixture of
three Normal distributions, which are shown in Table 44.

Table 44 — Composite hazard and response distribution parameters-.and weights.

Distribution Mean, u Std. Deviation, o ERL Weight
1 10 2 100 0.3
2 20 1 100 0.2
3 30 5 100 0.5

Verification of the computed mixture distribution was performed using built-in functions within the R
‘mistr’ package. The confidence intervals were created by performing the bootstrap analysis with 10,000
realizations for each sub-distribution. Then, for each realization, a mixture distribution was created
using the weights in Table 44. Finally, confidence intervals can be derived by computing percentiles from
the 10,000 bootstrapped mixture distributions (see the Parametric Bootstrap section for details on the
bootstrap algorithm).

The composite hazard function from RMC-TotalRisk is shown in Figure 23. The composite response
function produces the same results, but it is plotted as a CDF with the hazard levels versus the non-
exceedance probabilities. Whereas the composite hazard function plots the exceedance probabilities
versus the hazard levels.

4 https://cran.r-project.org/web/packages/mistr/index.html
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Figure 23 — Composite hazard function for three Normal distributions in RMC-TotalRisk.
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Figure 24 - Comparison of RMC-TotalRisk with R ‘mistr’ confidence intervals for the mixture distribution.
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Figure 24 shows a frequency curve plot comparing the bootstrap confidence interval results from RMC-
TotalRisk to the R ‘mistr’ package. Table 45 lists the results for the computed curve and Table 46 lists the
confidence interval results and the percent difference between the two software programs. It is clear
from these results that RMC-TotalRisk produces effectively identical results to those created with R. Any
differences in results are due to minor differences that arise from numerical precision differences,
differences from pseudo-random number generators, and Monte Carlo sampling errors. Example code
for getting the computed curve with R ‘mistr’is provided in Figure 25 below.

Table 45 - Comparison of RMC-TotalRisk with R 'mistr' computed curve for the mixture distribution.

. RMC- %
AEP R ‘mistr’ TotalRisk Difference
1.0E-06 53.10 53.06
2.0E-06 52.34 52.33
5.0E-06 51.33 51.32
1.0E-05 50.54 50.54
2.0E-05 49.72 49.72
5.0E-05 48.60 48.59
1.0E-04 47.70 47.70
2.0E-04 46.76 46.76
5.0E-04 45.45 45.45
1.0E-03 44,39 44,39
2.0E-03 43.26 43.26
5.0E-03 41.63 41.63
1.0E-02 40.27 40.27
2.0E-02 38.75 38.75
5.0E-02 36.40 36.40
1.0E-01 34.21 34.21
2.0E-01 31.26 31.26
3.0E-01 28.72 28.72
5.0E-01 21.38 21.38
7.0E-01 15.58 15.58
8.0E-01 10.88 10.88
9.0E-01 9.15 9.15
9.5E-01 8.07 8.07
9.8E-01 7.00 7.00
9.9E-01 6.34 6.34
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Table 46 - Comparison of RMC-TotalRisk with R 'mistr' confidence intervals for the mixture distribution.

5% - Cl 95% - CI
AEP . RMC- % . RMC- %
R ‘mistr’ TotalRisk Difference R ‘mistr’ TotalRisk Difference
1.0E-06 50.27 50.46 0.4% 55.80 55.87
2.0E-06 49.62 49.78 0.3% 55.00 55.06
5.0E-06 48.72 48.88 0.3% 53.94 53.96
1.0E-05 48.02 48.19 0.4% 53.07 53.09
2.0E-05 47.29 47.45 0.3% 52.16 52.19
5.0E-05 46.29 46.42 0.3% 50.90 50.93
1.0E-04 45.49 45.62 0.3% 49.91 49.93
2.0E-04 44.65 44.80 0.4% 48.87 48.91
5.0E-04 43.47 43.63 0.4% 47.43 47.43
1.0E-03 42.52 42.66 0.3% 46.26 46.25
2.0E-03 41.51 41.64 0.3% 45.00 44.99
5.0E-03 40.04 40.14 0.3% 43.21 43.17
1.0E-02 38.81 38.89 41.71 41.68
2.0E-02 37.44 37.50 40.05 40.02
5.0E-02 35.30 35.33 37.50 37.50
1.0E-01 33.25 33.28 35.15 35.17
2.0E-01 30.42 30.42 32.09 32.09
3.0E-01 27.89 27.89 29.57 29.57
5.0E-01 20.98 20.98 21.73 21.64
7.0E-01 14.81 14.78 16.29 16.26
8.0E-01 10.55 10.50 0.59 11.24 11.23
9.0E-01 8.80 8.76 9.51 9.49
9.5E-01 7.67 7.62 0.7% 8.49 8.47
9.8E-01 6.52 6.48 0.6% 7.49 7.47
9.9E-01 5.80 5.77 * 0.5% 6.87 6.87

library(mistr)

# define the sub-distributions

nl = normdist(mean =10, sd = 2)
n2 = normdist(mean = 20, sd = 1)
n3 = normdist(mean = 30, sd = 5)

# create the mixture
mix = mixdist(n1, n2, n3, weights = ¢(0.3, 0.2, 0.5))

# get a list of non-exceedance probabilities given the x-values
pVals = p(mix, g= seq(0, 60, 1))

Figure 25 — Example code for creating a mixture distribution with the R ‘mistr’ package.
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Composite Consequence Function

In dam and levee safety, there is often a need to combine multiple consequence functions into a single
composite function. RMC-TotalRisk provides three methods for creating a composite consequence
function: 1) consequence functions are summed; 2) consequence functions are averaged based on user-
defined weights; and 3) the uncertainty in consequence functions is treated as a mixture distribution
based on user-defined weights.

Additive

A composite consequence function can be created by summing across a list of consequences functions.
This capability is useful when flood damages are estimated separately by types or economic sectors. For
example, there could be damages to private properties, industrial buildings, agriculture, etc. The
damage to each sector can be estimated separately and then aggregated to a total damage using the
composite consequence function.

The uncertainty analysis procedures for composite consequence functions are described in the technical
reference manual [2]. A verification of the uncertainty routine for additive consequences was performed
using the theoretical solution for the sum of three independent Normal distributions.

Three hypothetical consequence functions representing life loss for different river stages (in feet) were
created for the purposed of this verification. At a stage of zero, the life loss was zero for all three
functions. The distribution of life loss at a stage of 10 ft was given by a Normal distribution for each
function as shown in Table 47. The resulting additive composite consequence function is shown in Figure
26 below.

Table 47 - Listing of consequence uncertainty fora single hazard level at three consequence functions.

Function Mean Life Loss, u Std. Deviation, o
1 10 2
2 20 1
3 100 5

The mean (uyy) and standard deviation (oyy) of the sum of two independent random variables is as
follows:

_ Equation 50
HUxy = Mx T py

Oxy = /0}? + o

These formulas are easily extended to multiple random variables; for example the mean of the sum of
three random variables is puyy; = Uy + Uy + 1z and standard deviation is oxyz; = /07 + 07 + 02.

Equation 51

Since the three input distributions are Normally distributed, the resulting distribution of the sum is also
Normally distributed. Therefore, the exact theoretical solution is easily obtained. Table 48 shows the
verification results for the additive composite consequence functions. RMC-TotalRisk produces a near
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perfect match with the theoretical solution. The minor differences are due to Monte Carlo sampling

errors in the RMC-TotalRisk uncertainty routine.

Consequence Function

== Mean
100 4| — Median
—_ ]
1]
= .
=
751 4
[%5}
3
&
— 50
| e e e S N w—
0 -

41| = Mean - Consequence_1
Mean - Consequence_2

— Mean - Consequence_3

= 90% Confidence Interval

Stage [ft]

Figure 26 - Composite consequence function with.additive consequences.

Table 48 - Verification results for the additive composite consequence function.

10

Statistic Exact Solution RMC-TotalRisk % Difference
Mean 130.00 130.01 0.0%
Std. Deviation 5.48 5.49 0.2%
5t %-ile 120.99 120.94 0.0%
95% %-ile 139.01 139.03 0.0%
Average

In Dam Safety risk analysis, it has been common practice to evaluate daytime and nighttime

consequences separately, and then assigning a weight (or likelihood) to each scenario. For example,
daytime consequences are typically given a weight of 0.42 and nighttime consequences are given a
weight of 0.58. Then, the composite consequences are derived by treating day and night consequences

as a weighted average.

A verification of the uncertainty routine for averaged consequences was performed using the theoretical
solution for the average of three independent Normal distributions. Verification of the averaged
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composite consequence was performed using the same functions as shown in Table 47. Each function
was given a weight of 0.3, 0.2, and 0.5, respectively. The resulting average composite consequence
function is shown in Figure 27 below.

The mean and standard deviation of the average of three independent random variables is:

Uxyz = Wy Uy T Wy Uy + wz " Uz Equation 52

— 2 2 2 2 2 2 .
Oxyz = \/wx ‘0y +wy oy +wz0; Equation 53

where wy is the weight given to variable X, wy is the weight given to variable Y, and w; is the weight
given to variable Z, with wy + wy + w; = 1.

Since the three input distributions are Normally distributed, the resulting distribution of the average is
also Normally distributed. Therefore, the exact theoretical solution'is easily obtained. Table 49 shows
the verification results for the average composite consequence functions. RMC-TotalRisk produces a
near perfect match with the theoretical solution. The minor differences are due to Monte Carlo
sampling errors in the RMC-TotalRisk uncertainty routine.
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Figure 27 - Composite consequence function with averaged consequences.
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Table 49 - Verification results for the averaged composite consequence function.

Statistic Exact Solution RMC-TotalRisk % Difference
Mean 57.00 57.00 0.0%
Std. Deviation 2.58 2.58 0.2%
5t %-ile 52.76 52.75 0.0%
95t %-ile 61.24 61.27 0.0%
Mixture

Rather than treating consequences as a weighted average, uncertainty from different consequence
scenarios can be treated as a mixture distribution. In the past, consequences from day and nighttime
exposure scenarios were combined as a weighted average. However, these scenarios are more
appropriately combined as a mixture, which will fully capture the uncertainty from all scenarios.

A verification of the uncertainty routine for mixture consequences was performed using the theoretical
solution for the mixture of three independent Normal distributions. An additional Monte Carlo
simulation was performed to verify the percentiles. Verification of the mixture composite consequence
was performed using the same functions as shown previously in Table 47. Each function was given a
weight of 0.3, 0.2, and 0.5, respectively. The resulting mixture composite consequence function is shown
in Figure 28 below.

The mean and standard deviation of a mixture of three distributions is:

Uxyz = Wy Ux t+ Wy Uy T Wz Uz Equation 54

Oxyz = wa (U2 4+ 02) + wy - (MR +02) + wy - (UE +02) — pzy, Equation 55

where wy is the weight given to variable X, wy is the weight given to variable Y, and w; is the weight
given to variable Z, with wy + wy + wz; = 1.

The mean of the average of random variables (Equation 52) is equivalent to the mean of the mixture
distribution (Equation 54). However, the standard deviation of the average (Equation 53) can be much
smaller than the mixture (Equation 55).

Even though the three input distributions are Normally distributed, the resulting mixture distribution is
not Normally distributed. Therefore, the exact theoretical solution for the mean and standard deviation
can be obtained, but the percentiles of the mixture does not have an exact solution. As such, and
additional Monte Carlo simulation with 10 million samples was performed to verify the RMC-TotalRisk
results. Table 50 shows the verification results for the mixture composite consequence functions as
compared to the exact theoretical solution. Table 51 shows the comparison of RMC-TotalRisk to the
Monte Carlo simulation results. RMC-TotalRisk produces a near perfect match with the theoretical and
Monte Carlo solutions. The minor differences are due to Monte Carlo sampling errors in the RMC-
TotalRisk uncertainty routine.
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Figure 28 - Composite consequence function with uncertainty in consequences treated as a mixture.

Table 50 - Verification results for the mixture composite consequence function.

% Difference

Statistic Exact Solution RMC-TotalRisk
Mean 57.00 57.01
Std. Deviation 43.30 43.28

Table 51 — Comparison of RMC-TotalRisk to a Monte Carlo simulation for the mixture composite consequence function.

Statistic Monte Carlo RMC-TotalRisk % Difference
Mean 56.86 57.01 0.3%
Std. Deviation 43.29 43.28
5t %-ile 8.04 8.04
95t %-ile 106.38 106.39
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Verification of Risk Analysis

In RMC-TotalRisk, within every Monte Carlo realization for every system component, risk is computed
using numerical integration. The Numerical Integration section provided verification of the Adaptive
Simpson’s Rule (ASR) and VEGAS methods. ASR is used for calculating risk for a system with a single
component (or single dimension), whereas VEGAS is used for calculating risk for systems with two or
more components (multidimensions).

The ASR and VEGAS methods were verified against analytical integrand functions with known solutions.
The integrands for real-world risk analyses are often very complex and they do not have a closed form
analytical solution. Consequently, verification of the risk analysis was performed using Monte Carlo
simulation. The Monte Carlo simulation approach randomly samples millions of events, and the
expected value is obtained from a simple arithmetic average from all the samples. Monte Carlo
simulation is especially useful for higher-dimensional problems where analytical solutions are not
available.

RMC- TotalRisk can perform multi-failure mode risk analysis for asingle system component or for a
complex system with multiple components. In addition, the user has control over the dependencies
between failure modes and system components, as well as how consequences of joint failures should be
handled. With this level of complexity, there are several aspects of the risk analysis that must be
verified.

To capture a reasonable range of complexity, nearly 50 verification tests were performed using Monte
Carlo simulation. Each system component has the same hazard function, which was a Ln-Normal
distribution with a real-space mean y = 85 and standard deviation ¢ = 20. There are up to five
potential failure modes, each entered as a Normal distribution (Table 52). Each failure mode has
associated failure consequences which were entered as tabular functions (Table 53). Each system
component has the same non-failure consequences. These inputs were used to develop the various
system configurations listed in Table 54.

Table 52 - Potential failure mode inputs.

Failure Modes Mean, u Std. Deviation, o
PFM-1 140 30
PFM-2 160 10
PFM-3 150 20
PFM-4 130 35
PFM-5 160 15

Table 53 - Consequence function inputs.

Stage (ft) Non-Fail PFM-1 PFM-2 PFM-3 PFM-4 PFM-5
60 0 0 0 0 0 0
100 1 5 3 10 2 8
140 10 50 30 100 20 80
200 100 500 300 1,000 200 800
250 150 750 450 1,500 300 1,200
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Table 54 - Listing of all risk analysis verification tests.

System Options

Failure Mode Options

Test Components Dependency Joint Modes Method Dependency Joint
Consequences Consequences

1 1 N/A N/A 2 CCA Independent N/A
2 1 N/A N/A 2 CCA Negative N/A
3 1 N/A N/A 5 CCA Independent N/A
4 1 N/A N/A 5 CCA Negative N/A
5 1 N/A N/A 2 Competing Independent N/A
6 1 N/A N/A 5 Competing Independent N/A
7 1 N/A N/A 2 Joint Independent Additive
8 1 N/A N/A 2 Joint Independent Average
9 1 N/A N/A 2 Joint Independent Maximum
10 1 N/A N/A 2 Joint Independent Minimum
11 1 N/A N/A 2 Joint Negative Additive
12 1 N/A N/A 2 Joint Negative Average
13 1 N/A N/A 2 Joint Negative Maximum
14 1 N/A N/A 2 Joint Negative Minimum
15 1 N/A N/A 5 Joint Independent Additive
16 1 N/A N/A 5 Joint Independent Average
17 1 N/A N/A 5 Joint Independent Maximum
18 1 N/A N/A 5 Joint Independent Minimum
19 1 N/A N/A 5 Joint Negative Additive
20 1 N/A N/A 5 Joint Negative Average
21 1 N/A N/A 5 Joint Negative Maximum
22 1 N/A N/A 5 Joint Negative Minimum
23 2 Independent Additive 1 N/A N/A N/A
24 2 Independent Average 1 N/A N/A N/A
25 2 Independent Maximum 1 N/A N/A N/A
26 2 Independent Minimum 1 N/A N/A N/A
27 2 Positive Additive 1 N/A N/A N/A
28 2 Positive Average 1 N/A N/A N/A
29 2 Positive Maximum 1 N/A N/A N/A
30 2 Positive Minimum 1 N/A N/A N/A
31 2 Negative Additive 1 N/A N/A N/A
32 2 Negative Average 1 N/A N/A N/A
33 2 Negative Maximum 1 N/A N/A N/A
34 2 Negative Minimum 1 N/A N/A N/A
35 2 Independent Additive 2 Joint Independent Additive
36 2 Positive Additive 2 Joint Independent Additive
37 2 Negative Additive 2 Joint Independent Additive
38 5 Independent Additive 1 N/A N/A N/A
39 5 Independent Average 1 N/A N/A N/A
40 5 Independent Maximum 1 N/A N/A N/A
41 5 Independent Minimum 1 N/A N/A N/A
42 5 Positive Additive 1 N/A N/A N/A
43 5 Positive Average 1 N/A N/A N/A
44 5 Positive Maximum 1 N/A N/A N/A
45 5 Positive Minimum 1 N/A N/A N/A
46 5 Negative Additive 1 N/A N/A N/A
47 5 Negative Average 1 N/A N/A N/A
48 5 Negative Maximum 1 N/A N/A N/A
49 5 Negative Minimum 1 N/A N/A N/A
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Every risk analysis listed above in Table 54 was estimated using the “Simulate Mean Risk Only” option
[2] in RMC-TotalRisk and compared against a Monte Carlo simulation with 10 million samples. For every
verification test, all five risk types were computed and reported to 6 decimal places. As discussed in [2],
the five risk types are: 1) incremental [E[C,]; 2) background E[Cy]; 3) total E[C]; 4) failure E[CF]; and
5) non-failure E[Cyr].

For a single system component, the total risk is the sum of incremental plus background risk, and the
sum of failure plus non-failure risk:

IE[CT] = [E[CA] + ]E[CB] Equation 56

Equation 57
E[CT] = IE[CF] + IE[CNF]

However, in RMC-TotalRisk, a system can have multiple components, each with multiple failure modes
where each component also has a separate non-failure mode. As such, there is a potential for some
embedded correlation between incremental consequences and non-failure consequences across system
components. Therefore, for a system with multiple components, depending on the joint consequence
rule, total risk will be greater than or equal to incremental plus background risk:

E[Cr]lq = E[Cpla + E[Csla Equation 58

Equation 59
]E[CT]Q = IE[CF]Q + IE[CNF]Q

The complete mathematic details behind these risk types are provided in the technical reference manual
[2]. The following subsections provide a full listing of the verification test results and a description of the
Monte Carlo algorithms used for various system configurations.

Multiple Failure Modes

The first 22 verification tests evaluate a single system component with multiple failure modes. RMC-
TotalRisk provides three computational methods for assessing multiple failure modes: 1) the common
cause adjustment, 2) competing failure modes, and 3) joint failure modes. The mathematic details
behind these computational methods are provided in the technical reference manual [2].

Common Cause Failure Modes

The Common Cause Adjustment (CCA) is a method that was originally intended for failure modes that
are not mutually exclusive and that can occur simultaneously at multiple sections of a dam due to a
single or common cause initiating event [22]. The CCA was originally intended for positively correlated
or independent failure modes. However, there are situations where failure modes can be negatively
dependent, which will lead to a higher combined probability of failure for the system. RMC-TotalRisk
employs a generalized version of the CCA that can also work with negative dependency.

The description of the Monte Carlo routine for estimating the risk of failure for independent CCA failure
modes is provided in Algorithm 1. This routine can be expanded to include all risk types [2].
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Algorithm 1 — Simulate Risk of Failure with Independent CCA Failure Modes

R < number of Monte Carlo realizations
M <« number of failure modes
fori « 1toR do

h « Fﬁl(ri) where Ti“’U(O;l) C>Randomly sample a hazard level
forj < 1to M do

pfj — FFM]' (h) > Get the probability of failure of each failure mode given the hazard level
end for

forj « 1to M do

pfj « C- pf]. > Perform common cause adjustment of each failure probability

pr «— pr + pfj > Create a cumulative distribution across all modes

If T} < pr where T}NU(O,l) then &> Randomly sample to determine failure
Nf — Nf + ij (h) > The system failed, so.get the consequences of failure given the hazard level
break

end if

end for
end for

Estimate the mean risk of failure IE[Nf] « Nf/R

The verification results for the CCA method are provided in Table 55 through Table 58. RMC-TotalRisk
has near perfect agreement with the Monte Carlo results. The expected values E[N] of all five risk types
are provided in the tables. As shown in Table 55, total risk is the sum of incremental plus background
risk:

]E[CT] = IE[CA] + ]E[CB] Equation 60

Equation 61
3.080821 = 1.654059 + 1.426762

Likewise, total risk is also the sum of failure plus non-failure risk:
E[C;] = E[Cr] + E[Cyr] Equation 62

Equation 63
3.080821 = 2.113075 + 0.967746
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Table 55 - 1 system component with 2 independent common cause failure modes

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental, E[C,] 1.655845 1.654059 0.1%
Background, E[Cj] 1.427955 1.426762 0.1%
Total, E[C;] 3.083800 3.080821 0.1%
Failure, E[CF] 2.115712 2.113075 0.1%
Non-Failure, E[Cyf] 0.968088 0.967746 0.0%

Table 56 - 1 system component with 2 negatively dependent common cause failure modes

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.736219 1.738393 0.1%
Background 1.427955 1.426760 0.1%
Total 3.164173 3.167373 0.1%
Failure 2.218916 2.222265 0.2%
Non-Failure 0.945257 0.945108 0.0%

Table 57 - 1 system component with 5 independent common cause failure modes

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.715177 2.711843 0.1%
Background 1.427955 1.426754 0.1%
Total 4.143132 4.138598 0.1%
Failure 3.494614 3.490207 0.1%
Non-Failure 0.648518 0.648391 0.0%

Table 58 - 1 system component with 5 negatively dependent common cause failure modes

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.847377 2.841821 0.2%
Background 1.427955 1.426752 0.1%
Total 4.275332 4.268584 0.2%
Failure 3.667178 3.660357 0.2%
Non-Failure 0.608154 0.608227 0.0%

Competing Failure Modes

A competing failure analysis represents a combination of two or more failure modes that are
“competing” to the end of life of a series system. The competing failure mode approach can be thought
of as a race to see which failure mode will fail first. The key assumption is that each failure mode
proceeds independently of every other one until failure occurs. At the point of first failure, each failure
mode is mutually exclusive from one another; i.e., there cannot be joint failures.
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The description of the Monte Carlo routine for estimating the risk of failure with independent competing
failure modes is provided in Algorithm 2 below. This routine can be expanded to include all risk types.
The verification results for competing failures are provided in Table 59 and Table 60. RMC-TotalRisk has
near perfect agreement with the Monte Carlo results.

Table 59 - 1 system component with 2 independent competing failure modes

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.745274 1.744245 0.1%
Background 1.427955 1.426705 0.1%
Total 3.173229 3.170950 0.1%
Failure 2.204366 2.203265 0.0%
Non-Failure 0.968863 0.967685 0.1%

Table 60 - 1 system component with 5 independent competing failure modes

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.204566 2.197086 0.3%
Background 1.427955 1.426719 3 0.1%
Total 3.632521 3.623804 0.2%
Failure 2.984006 2.975383 0.3%
Non-Failure 0.648515 0.648421 0.0%

Algorithm 2 — Simulate Risk of Failure with Independent Competing Failure Modes

R < number of Monte Carlo realizations
M <« number of failure modes
fori <« 1toR do

h < F,;l(ri) where Ti~U(0,1) B>Randomly sample a hazard level
forj « 1to M do
If T] < FFM]- (h) where T}"'U(O,l) and 1’11]11’1 FI;TI\,ll] (T}) then &> Randomly sample to determine failure
> The failure mode that fails first is the one with the minimum hazard level given the random sample
Nf «— Nf + Cf]- (h) > The system failed, so get the consequences of failure given the hazard level
break
end if
end for

end for
Estimate the mean risk of failure IE[Nf] «— Nf/R
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Joint Failure Modes

A joint failure modes analysis directly allows for dependency between failure modes and allows for
simultaneous (joint) failures. The only assumption required for this analysis is that a rule must be
assumed to account for the joint consequences of failure.

When there are multiple failure modes, the number of possible ways the system can fail is 2™ — 1. The
joint failure mode approach enumerates all possible combinations of failure and non-failure. As the
number of failure modes and system components increase, the number of ways the system can fail
increases exponentially [2]. Considering this, in RMC-TotalRisk, if the joint failure mode option is
selected, the maximum number of failure modes allowable for a single system component is 20.

The description of the Monte Carlo routine for estimating the risk of failure with independent joint
failure modes and additive joint consequences is provided in Algorithm 3. This routine can be expanded
to include all risk types. Example code for performing a risk analysis for a single system component with
joint failure modes and additive consequences is provide in Figure 29 below.

Algorithm 3 — Simulate Risk of Failure with Independent Joint Failure Modes and Additive Joint
Consequences

R < number of Monte Carlo realizations
M < number of failure modes
fori « 1toR do

h < F,}l(ri) where TiNU(O,l) >Randomly sample a hazard level
forj « 1to M do
If T < FFM]- (h) where T]"’U(O,1) then > Randomly sample to determine failure
Nf — Nf + ij (h) B The system failed, so get the consequences of failure given the hazard level
end if
end for
end for

Estimate the mean risk of failure IE[Nf] « Nf/R

The verification results for joint failures are provided in Table 61 through Table 76. RMC-TotalRisk has
near perfect agreement with the Monte Carlo results.

For a graphical comparison of risk analysis results, Figure 30 shows the FN curves for a single system
component with two joint failure modes and additive consequences. The TotalRisk results are shown as
thicker transparent lines, and the Monte Carlo results are plotted as dashed lines. The ASR integration
approach used by RMC-TotalRisk arrives at nearly the same results as the Monte Carlo simulation;
however, the ASR method can do so with only a couple hundred function evaluations rather than the 10
million required by the simulation.
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library(stats)

Realz = 10000000

incremental = numeric(Realz); background = numeric(Realz); total = numeric(Realz); fail = numeric(Realz); nonfail =
numeric(Realz)

set.seed(12345)

for (i in 1:Realz){

# Get hazard level

# Hazard distribution is a Ln-Normal

mu = 85; sigma = 20; var = sigma”2

Imu = log(mu”2 / sqrt(var + mu”2)); Isigma = sqrt(log(1.0 + var / mu”2))
h = glnorm(p = runif(1), meanlog = Imu, sdlog = Isigma)

# Get non-fail damages
nfc = approx(x = ¢(60, 100, 140, 200, 250), y = c(0, 1, 10, 100, 150), xout = h, yleft = 0, yright = 150)Sy

# Get failure damages

failed = FALSE; fc=0;ic=0

#PFM 1

if (runif(1) <= pnorm(q = h, mean = 140, sd = 30)){
failed = TRUE
f1 = approx(x = ¢(60, 100, 140, 200, 250), y = c(0, 5, 50, 500, 750), xout = h, yleft = 0, yright = 750)Sy
fc=fc+fl

}

#PFM 2

if (runif(1) <= pnorm(q = h, mean = 160, sd = 10)){
failed = TRUE
f2 = approx(x = ¢(60, 100, 140, 200, 250), y = c(0, 3, 30, 300, 450), xout = h, yleft = 0, yright = 450)Sy
fc=fc+1f2

}

if (failed == TRUE) ic = fc — nfc

# Record results
incrementalli] = ic
background(i] = nfc

if (failed == TRUE){ nfc =0}
total[i] = fc + nfc

fail[i] = fc

nonfail[i] = nfc

}

# Expected consequences

mean(incremental); mean(background); mean(total); mean(fail); mean(nonfail)
#1[1] 2.137346

#1[1] 1.427623

#[1] 3.56497

#1[1] 2.597125

#[1] 0.9678445

Figure 29 - Example code for estimation risk for a single system component with joint failure modes with the R ‘stats’ package.
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Table 61 - 1 system component with 2 independent failure modes and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.138221 2.136250
Background 1.427955 1.426757
Total 3.566176 3.563007
Failure 2.597312 2.595259
Non-Failure 0.968863 0.967748

Table 62 - 1 system component with 2 independent failure modes and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.665706 1.666106
Background 1.427955 1.426764
Total 3.093661 3.092869
Failure 2.124798 2.125125
Non-Failure 0.968863 0.967745

Table 63 - 1 system component with 2 independent failure modes and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.783835 1.783639
Background 1.427955 1.426760
Total 3.211790 3.210399
Failure 2.242926 2.242653
Non-Failure 0.968863 0.967746

Table 64 - 1 system component with 2 independent failure modes and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.547577 1.548567
Background 1.427955 1.426773
Total 2.975532 2.975340
Failure 2.006669 2.007600
Non-Failure 0.968863 0.967740

Table 65 - 1 system component with 2 negatively dependent failure modes and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.114628 2.111377
Background 1.427955 1.426755
Total 3.542583 3.540351
Failure 2.598992 2.595238
Non-Failure 0.943591 0.945113
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Table 66 - 1 system component with 2 negatively dependent failure modes and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 1.740963 1.740667
Background 1.427955 1.426760
Total 3.168918 3.169647
Failure 2.225327 2.224539
Non-Failure 0.943591 0.945108

% Difference

Table 67 - 1 system component with 2 negatively dependent failure modes and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 1.834379 1.833352
Background 1.427955 1.426760
Total 3.262334 3.262331
Failure 2.318743 2.317222
Non-Failure 0.943591 0.945109

% Difference

Table 68 - 1 system component with 2 negatively dependent failureimodes and-minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 1.647547 1.647979
Background 1.427955 1.426760
Total 3.075501 3.076959
Failure 2.131910 2.131851
Non-Failure 0.943591 0.945108

Table 69 - 1 system component with 5 independent failure modes and additive joint consequences

% Difference

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 6.936764 6.920990
Background 1.427955 1.426735
Total 8.364718 8.347725
Failure 7.716204 7.699330
Non-Failure 0.648515 0.648395

Table 70 - 1 system component with 5 independent failure modes and average joint consequences

% Difference

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 2.630434 2.626588
Background 1.427955 1.426754
Total 4.058388 4.053342
Failure 3.409874 3.404951
Non-Failure 0.648515 0.648391
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Table 71 - 1 system component with 5 independent failure modes and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 3.874881 3.868535
Background 1.427955 1.426748
Total 5.302836 5.295283
Failure 4.654321 4.646891
Non-Failure 0.648515 0.648392

Table 72 - 1 system component with 5 independent failure modes and minimum joint consequences

% Difference

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 1.517102 1.515594
Background 1.427955 1.426785
Total 2.945057 2.942378
Failure 2.296542 2.293994
Non-Failure 0.648515 0.648385

% Difference

Table 73 - 1 system component with 5 negatively dependent failureimodes and-additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 6.890224 6.880921
Background 1.427955 1.426735
Total 8.318179 8.307686
Failure 7.710042 7.699460
Non-Failure 0.608137 0.608226

% Difference

Table 74 - 1 system component with 5 negatively dependent failure modes and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 2.797486 2.794816
Background 1.427955 1.426753
Total 4.225441 4.221599
Failure 3.617304 3.613377
Non-Failure 0.608137 0.608222

% Difference

Table 75 - 1 system component with 5 negatively dependent failure modes and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 4.004253 3.999984
Background 1.427955 1.426744
Total 5.432208 5.426759
Failure 4.824072 4.818534
Non-Failure 0.608137 0.608224
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Table 76 - 1 system component with 5 negatively dependent failure modes and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.713543 1.712076 0.1%
Background 1.427955 1.426765 0.1%
Total 3.141498 3.138871 0.1%
Failure 2.533361 2.530657 0.1%
Non-Failure 0.608137 0.608215 0.0%

Multiple System Components

Computing risk for multiple system components requires integration over a multidimensional integral.
RMC-TotalRisk uses an adaptive importance sampling algorithm called VEGAS [7] [8]. More details on
this method can be found in [1], [2], and [9].

The dependency between system components is defined based on the dependency between hazard
functions. The dependency between system components can be set as perfectly independent, positive,
or negatively dependent. There is also an option to set the dependency between system components
with a user-defined correlation matrix [2]. The user must also select the joint consequence rule. The
joint failure mode approach in the previous section is used to estimate the combined consequences of
failure and non-failure of the system. In the current version of RMC-TotalRisk, the failure modes within a
system component are statistically independent from failure modes within all other system
components.

The description of the Monte Carlo routine for estimating the risk of failure with independent system
components, each with independent joint failure modes and additive joint consequences, is provided in
Algorithm 4. This routine can be expanded to include all risk types.

Algorithm 4 — Simulate Risk of Failure with Independent System Components Each with Independent
Joint Failure Modes and Additive Joint Consequences

R < number of Monte Carlo realizations
D < number of system components
fori <« 1toR do
forj < 1toD do
M; < number of failure modes in component j

h « FI;I(TL-_]-) where Ti_]-~U(0,1) >Randomly sample a hazard level for component
fork < 1to M; do
ifr, < FFMjk(h) where ijk~U(0,1) then = Randomly sample to determine failure
Nf « Nf + ij,k(h) & The system component failed
so, get the consequences of failure given the hazard level
end if
end for
end for

end for
Estimate the mean risk of failure IE[Nf] < N¢/R
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Figure 31 shows the FN curves for a system with two components, each with one failure mode and
additive consequences. The TotalRisk results are shown as thicker transparent lines, and the Monte
Carlo results are plotted as dashed lines. The VEGAS multidimensional integration approach used by
RMC-TotalRisk produces nearly the same results as the Monte Carlo simulation; however, the VEGAS
method can typically do so with less than 20 thousand function evaluations, rather than the 10 million
required by the Monte Carlo simulation.

The verification results for joint failures are provided in Table 77 through Table 103. RMC-TotalRisk has
near perfect agreement with the Monte Carlo results.

Table 77 — 2 independent system components each with 1 failure mode and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.017288 2.018285 0.0%
Background 2.855437 2.852825 0.1%
Total 4.872725 4.871109 0.0%
Failure 2.593366 2.594673 0.1%
Non-Failure 2.279360 2.276436 0.1%

Table 78 - 2 independent system components each with 1 failure mode and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.004752 2.006091 0.1%
Background 1.427719 1.426486 0.1%
Total 3.758951 3.759305 0.0%
Failure 2.575244 2.577056 0.1%
Non-Failure 1.183707 1.182249 0.1%

Table 79 - 2 independent system components each with 1 failure mode and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.013030 2.013996 0.0%
Background 2.416342 2.413949 0.1%
Total 4.487518 4.486161 0.0%
Failure 2.587785 2.589050 0.0%
Non-Failure 1.899734 1.897111 0.1%

Table 80 - 2 independent system components each with 1 failure mode and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.996474 1.998192 0.1%
Background 0.439095 0.438931 0.0%
Total 3.030384 3.032464 0.1%
Failure 2.562703 2.565090 0.1%
Non-Failure 0.467681 0.467374 0.1%
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Figure 31 — The F-N plot for a system with two components, each with one failure mode and additive consequences.
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Table 81 — 2 positively dependent system components each with 1 failure mode and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 2.017594 2.018545
Background 2.856296 2.853464
Total 4.873890 4.872009
Failure 2.593824 2.595047
Non-Failure 2.280066 2.276962

% Difference

Table 82 - 2 positively dependent system components each with 1 failure mode and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 1.664981 1.665942
Background 1.428148 1.426719
Total 3.434284 3.434103
Failure 2.123673 2.124913
Non-Failure 1.310610 1.309190

% Difference

Table 83 - 2 positively dependent system components each with 1 failure mode.and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 1.782519 1.783491
Background 1.428148 1.426752
Total 3.551821 3.551691
Failure 2.241211 2.242467
Non-Failure 1.310610 1.309223

% Difference

Table 84 - 2 positively dependent.system components each with 1 failure mode and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 1.547443 1.548412
Background 1.428148 1.426726
Total 3.316746 3.316582
Failure 2.006136 2.007381
Non-Failure 1.310610 1.309201

% Difference

Table 85 — 2 negatively dependent system components each with 1 failure mode and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 2.014946 2.018793
Background 2.852113 2.853782
Total 4.867058 4.872576
Failure 2.589851 2.595380
Non-Failure 2.277207 2.277196
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Table 86 - 2 negatively dependent system components each with 1 failure mode and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 2.014888 2.018602
Background 1.426056 1.426874
Total 3.735204 3.740538
Failure 2.589764 2.595126
Non-Failure 1.145439 1.145412

% Difference

Table 87 - 2 negatively dependent system components each with 1 failure mode and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 2.014946 2.018674
Background 2.593128 2.594702
Total 4.617460 4.622746
Failure 2.589851 2.595231
Non-Failure 2.027609 2.027516

% Difference

Table 88 - 2 negatively dependent system components each with 1 failure mode‘and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 2.014830 2.018619
Background 0.258984 0.259115
Total 2.852948 2.858527
Failure 2.589678 2.595149
Non-Failure 0.263270 0.263378

% Difference

Table 89 — 2 independent system.components each with 2 independent failure modes and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 4.265464 4.271295
Background 2.852090 2.853490
Total 7.117553 7.124785
Failure 5.182284 5.189128
Non-Failure 1.935270 1.935658

% Difference

Table 90 — 2 positively dependent system components each with 2 independent failure modes and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N]
Incremental 4.269872 4.272228
Background 2.853251 2.853518
Total 7.123123 7.125745
Failure 5.187768 5.190203
Non-Failure 1.935355 1.935543
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Table 91 — 2 negatively dependent system components each with 2 independent failure modes and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 4.278800 4.272820
Background 2.854866 2.853630
Total 7.133666 7.126450
Failure 5.197708 5.190912
Non-Failure 1.935957 1.935539

Table 92 — 5 independent system components each with 1 failure mode and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 6.108527 6.122738
Background 7.127700 7.119127
Total 13.236227 13.241865
Failure 7.681828 7.708889 0.4%
Non-Failure 5.554399 5.532976 0.4%

Table 93 - 5 independent system components each with 1 failure mode and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 5.568252 5.556979
Background 1.425540 1.424691
Total 8.189262 8.184263
Failure 7.025408 7.023737
Non-Failure 1.163855 1.160526 0.3%

Table 94 - 5 independent system components each with 1 failure mode and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 6.025967 6.029169
Background 4.598846 4.599493
Total 10.968579 10.970967
Failure 7.558594 7.573999
Non-Failure 3.409985 3.396968 0.4%

Table 95 - 5 independent system components each with 1 failure mode and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 5.098583 5.096918
Background 0.153408 0.154650
Total 6.633722 6.643208
Failure 6.478531 6.486784
Non-Failure 0.155191 0.156424 0.8%
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Table 96 — 5 positively dependent system components each with 1 failure mode and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 6.143270 6.123966 0.3%
Background 7.140574 7.138028 0.0%
Total 13.283844 13.261993 0.2%
Failure 7.723975 7.700912 0.3%
Non-Failure 5.559869 5.561081 0.0%

Table 97 - 5 positively dependent system components each with 1 failure mode and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.633103 2.627145 0.2%
Background 1.428115 1.427658 0.0%
Total 4.774072 4.767531 0.1%
Failure 3.412262 3.405693 0.2%
Non-Failure 1.361811 1.361838 0.0%

Table 98 - 5 positively dependent system components each with 1 failure mode.and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 3.878425 3.868349 0.3%
Background 1.428115 1.428004 0.0%
Total 6.019395 6.008984 0.2%
Failure 4.657584 4.646713 0.2%
Non-Failure 1.361811 1.362271 0.0%

Table 99 - 5 positively dependent.system components each with 1 failure mode and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.516603 1.515976 0.0%
Background 1.426499 1.427498 0.1%
Total 3.656122 3.656317 0.0%
Failure 2.294723 2.294713 0.0%
Non-Failure 1.361399 1.361604 0.0%

Table 100 - 5 negatively dependent system components each with 1 failure mode and additive joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 6.095003 6.059984 0.6%
Background 7.125940 7.107293 0.3%
Total 13.220943 13.167277 0.4%
Failure 7.666340 7.611653 0.7%
Non-Failure 5.554603 5.555624 0.0%
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Table 101 - 5 negatively dependent system components each with 1 failure mode and average joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 5.829741 5.793946 0.6%
Background 1.425188 1.419711 0.4%
Total 8.492369 8.435112 0.7%
Failure 7.344564 7.288417 0.8%
Non-Failure 1.147805 1.146695 0.1%

Table 102 - 5 negatively dependent system components each with 1 failure mode and maximum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 6.070426 6.033674 0.6%
Background 4.965946 4.955526 0.2%
Total 11.280812 11.232915 0.4%
Failure 7.627586 7.570491 0.7%
Non-Failure 3.653226 3.662424 0.3%

Table 103 - 5 negatively dependent system components each with 1failure mode and minimum joint consequences

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 5.590722 5.568786 0.4%
Background 0.100801 0.100250 0.5%
Total 7.165477 7.126707 0.5%
Failure 7.063415 7.025254 0.5%
Non-Failure 0.102062 0.101453 0.6%
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Annual Probability of Inundation

RMC-TotalRisk provides capabilities to support the National Flood Insurance Program (NFIP). The USACE
uses a risk-informed approach to perform NFIP Levee System Evaluations (LSEs) to make a
recommendation about whether to certify and accredit a levee system. USACE guidance for conducting
LSEs to assess levee accreditation is currently outlined in Engineering and Construction Bulletin (ECB)
2019-11 [23]. All LSEs must include a computation of assurance of the 0.01 AEP which is the probability
that the 0.01 AEP event will not be exceeded [23].

Computation of assurance of the 0.01 AEP for the NFIP requires an estimate of the annual probability of
inundation (API), which is the probability that the leveed area will be inundated due to levee
overtopping or breach in any given year. In RMC-TotalRisk, the APl is computed as shown below in
Equation 65. More details on API and assurance can be found in [2].

API = Z P(xi) . P(lel) + Z P(xl) . {1 _ P(lel)} Equation 64
i=1 i=xT

where P(x;) is the probability of the hazard level x;; P(F|x;) is the conditional probability of failure
given the hazard level x;; x7 is the top of levee height; and {1 — P(F|x;)} is the probability of non-
failure given the hazard level x;, which is simply the complement of the probability of failure at a given
hazard level.

Verification of the API calculation was performed using the hypothetical levee risk analysis provided by
Smith [24]. An illustration of the idealized cross section of a river channel with a single levee is shown in
Figure 32. As discussed in [24], the levee has a backwards erosion piping (BEP) failure mode, which is a
function of the height, base, and crest width of the levee. In addition, there is an overtopping failure
mode, which is only a function of the height. For simplicity, the economic consequences do not vary
based on the failure mechanism and are instead a function of the water level. Figure 33 shows the
failure and non-failure consequence functions for a levee height of 70 ft.

< Bc—>»
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Figure 32 - Idealized cross section of a river channel with a single levee (taken from Smith [24]).
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Figure 33 - Property damage in Smillions as a function of water level (taken from Smith [24]).

For verification, five different levee configurations were modeled, each with a different levee height. A
Monte Carlo simulation was performed using 10 million samples following Algorithm 5 below. Results
are shown in Table 104. RMC-TotalRisk has very close agreement with the Monte Carlo results. The
minor differences are due to Monte Carlo sampling errors.

Table 104 - Comparison of RMC-TotalRisk to Monte Carlo simulation for the Annual Probability of Inundation.

Levee Height Monte Carlo RMC-TotalRisk % Difference
50 0.038197 0.038212 0.0%
55 0.018829 0.018807 0.1%
60 0.010254 0.010237 0.2%
65 0.006042 0.006043 0.0%
70 0.003820 0.003809 0.3%
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Algorithm 5 — Simulate the Probability of Inundation

R < number of Monte Carlo realizations
M < number of failure modes
ToL <« top of levee height
fori <« 1toR do
h « F;1(r;) where 1;~U(0,1)
if h > ToL then
N, <N +1
else
forj < 1to M do
ifr; < FFMj(h) where 1;~U(0,1) then
N, <N, +1
end if
end for
end if
end for
Estimate the probability of inundation API « N;/R

>Randomly sample a hazard level

&> The levee was overtopped, so there is inundation

&> Randomly sample to determine failure

> The system failed, so there is inundation
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Comparison with DAMRAE

The Dam Safety Risk Analysis Engine, DAMRAE®, is a software tool for performing event tree calculations
and risk analysis for dam safety risk assessment studies [25]. A comparison was made between RMC-
TotalRisk and DAMRAE® following the same hypothetical examples provided in [26]. The “Simulate
Mean Risk Only” option [2] was used to estimate risk with TotalRisk.

There were four example risk analyses: 1) a single dam with a single failure mode; 2) a dam with two
failure modes; 3) a dam with three failure modes; and 4) a dam with ten failure modes. The multiple
failure modes were combined using the common cause adjustment (CCA) method. The incremental risk
results for these comparisons are provided in Table 105 through Table 108. RMC-TotalRisk very closely
matches DAMRAE®.

Differences in results are most likely due to differences in numerical integration techniques. Each of the
DAMRAEP® risk analyses were estimated using the Trapezoidal Rule integration with 50 bins. Whereas
RMC-TotalRisk uses an Adaptive Simpson’s Rule (ASR) approach, which required approximately 300
function evaluations to reach a tolerance of 1e~8 for each of the risk analyses. The differences between
the software are minor and would not change any real-world investment decisions.

Table 105 — Comparison of RMC-TotalRisk to DAMRAE® for incremental risk for 1.system component with 1 failure mode.

Ex. Probability, a Conditional Mean, n Mean, E[N]
DAMRAE® 1.620E-07 1047 1.690E-04
RMC-TotalRisk 1.618E-07 1047 1.694E-04
% Difference 0.1% . 0.0% 0.2%

Table 106 — Comparison of RMC-TotalRisk‘to DAMRAE® for incremental risk for 1 system component with 2 failure modes.

Ex. Probability, a Conditional Mean, 7 Mean, E[N]
DAMRAE® 3.150E-07 1010 3.180E-04
RMC-TotalRisk 3.146E-07 1010 3.177E-04
% Difference L (..% 0.0% 0.1%

Table 107 — Comparison of RMC-TotalRisk to DAMRAE® for incremental risk for 1 system component with 3 failure modes.

Ex. Probability, a Conditional Mean, n Mean, E[N]
DAMRAE® 7.990E-07 977 7.810E-04
RMC-TotalRisk 7.854E-07 977 7.676E-04
% Difference 1.7% 0.0% 1.7%

Table 108 — Comparison of RMC-TotalRisk to DAMRAE® for incremental risk for 1 system component with 10 failure modes.

Ex. Probability, a Conditional Mean, 7 Mean, E[N]
DAMRAE® 1.700E-05 1180 2.000E-02
RMC-TotalRisk 1.694E-05 1180 1.998E-02
% Difference 0.4% 0.0% 0.1%
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Comparison with DamonRAE

Since 2019, the USACE Risk Management Center has primarily performed dam and levee safety risk
analyses with a spreadsheet tool colloquially referred to as DamonRAE, which is named after the
developer of the tool. This spreadsheet tool uses Palisade’s @Risk® for performing Monte Carlo
simulation of event trees and other risk inputs. Within each Monte Carlo realization, incremental,
background, and total risk are estimated using the Trapezoidal Rule method with 50 bins (please see the

technical reference manual [2] for details on these risk types). DamonRAE was previously validated
against DAMRAE® and shown to produce the same results [26].

A comparison was made between RMC-TotalRisk and DamonRAE using three example dams within the
USACE Dam Safety portfolio®®. The “Simulate Mean Risk Only” option [2] was used to estimate risk with
TotalRisk. For each example, multiple failure modes were combined using the CCA method.

The first example dam has two failure modes: 1) spillway erosion; and 2) concentrated leak erosion

along the embankment at foundation contact. Results for this example are provided in Table 109 and
Table 110. RMC-TotalRisk very closely matches DamonRAE for this example.

The primary differences in results are most likely due to differences in numerical integration techniques.
RMC-TotalRisk uses an ASR approach, which required 117 function evaluations to reach a tolerance of
1e~8 for this example risk analysis.

Table 109 — Comparison of RMC-TotalRisk to DamonRAE for incremental risk at example ‘Dam 1’ with 2 Failure Modes.

Ex. Probability, a Conditional Mean, i Mean, E[N]
DamonRAE 8.970E-06 127.00 1.140E-03
RMC-TotalRisk 8.883E-06 127.83 1.136E-03
% Difference 1.0% 0.7% 0.4%

Table 110 — Comparison RMC-TotalRisk to DamonRAE for example ‘Dam 1’ with 2 Failure Modes.

Risk Type DamonRAE, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 1.140E-03 1.136E-03 0.4%
Background 3.720E-05 3.656E-05 1.7%
Total 1.180E-03 1.172E-03 0.7%

The next example dam also has two failure modes: 1) overtopping of dam crest leading to breach; and 2)
backwards erosion piping on the left abutment. Results for this example are provided in Table 111 and
Table 112. RMC-TotalRisk closely matches DamonRAE for this example. While the percent differences

are noticeable, the absolute differences are very small.

The primary differences in results are most likely due to differences in numerical integration techniques.

RMC-TotalRisk required 413 function evaluations to reach a tolerance of 1e~8 for this example risk

analysis. Therefore, the 50 bins used in DamonRAE are likely insufficient to reach an equivalent level of

5 The names of these dams and the inputs are not provided since the risk results are for internal use

only.




precision. In addition, due to the challenge of converting the spreadsheet model to TotalRisk, there
could be minor differences in how uncertainty is sampled between inputs.

Table 111 — Comparison of RMC-TotalRisk to DamonRAE for incremental risk at example ‘Dam 2’ with 2 Failure Modes.

Ex. Probability, a Conditional Mean, n Mean, E[N]
DamonRAE 2.370E-07 9,454.00 2.240E-03
RMC-TotalRisk 2.402E-07 9,452.28 2.271E-03
% Difference 1.4% 0.0% 1.4%

Table 112 — Comparison RMC-TotalRisk to DamonRAE for example ‘Dam 2’ with 2 Failure Modes.

Risk Type DamonRAE, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.240E-03 2.271E-03 1.4%
Background 6.960E-01 6.772E-01 2.7%
Total 6.980E-01 6.794E-01 2.7%

The final example dam has three failure modes: 1) overtopping of dam crest leading to breach; 2)
backwards erosion piping of foundation soils in the terrace section; and 3) backwards erosion piping of
foundation soils in the transition section. Results for this example are provided in Table 113 and Table
114. RMC-TotalRisk does not agree well with DamonRAE for this example. The percent differences are
greater than five percent, but the absolute differences are relatively small; certainly not large enough to
change any investment decisions. Nevertheless, as mentioned previously, differences greater than five
percent required additional analysis and justification.

Table 113 — Comparison of RMC-TotalRisk to DamonRAE for incremental risk at example ‘Dam 3’ with 3 Failure Modes.

Ex. Probability, a Conditional Mean, i Mean, E[N]
DamonRAE 3.600E-04 8.00 2.840E-03
RMC-TotalRisk 3.308E-04 7.86 2.600E-03
% Difference L sax 1.8% [ saw |

Table 114 — Comparison RMC-TotalRisk to DamonRAE for example ‘Dam 3’ with 3 Failure Modes.

Risk Type DamonRAE, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.840E-03 2.600E-03
Background 4.550E-02 3.746E-02
Total 4.840E-02 4.006E-02

As an additional verification test, a Monte Carlo simulation with 10 million samples (see Algorithm 1)
was used to calculate risk for example Dam #3. The results from this comparison are provided in Table
115 and Table 116. RMC-TotalRisk very closely matches the Monte Carlo results. Therefore, it can be
concluded that the primary differences between TotalRisk and DamonRAE for example Dam #3 are most
likely due to differences in numerical integration techniques. RMC-TotalRisk required 209 function
evaluations to reach a tolerance of 1e 2 for this example risk analysis. Therefore, the 50 bins used in
DamonRAE are likely insufficient to reach an equivalent level of precision. In addition, due to the
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challenge of converting the spreadsheet model to TotalRisk, there could be minor differences in how

uncertainty is sampled between inputs.

Table 115 — Comparison of RMC-TotalRisk to Monte Carlo for incremental risk at example ‘Dam 3’ with 3 Failure Modes.

Ex. Probability, a Conditional Mean, n Mean, E[N]
Monte Carlo 3.314E-04 7.86 2.604E-03
RMC-TotalRisk 3.308E-04 7.86 2.600E-03
% Difference 0.2% 0.0% 0.1%

Table 116 — Comparison RMC-TotalRisk to Monte Carlo for example ‘Dam 3’ with 3 Failure Modes.

Risk Type Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 2.60E-03 2.600E-03 0.1%
Background 3.74E-02 3.746E-02 0.2%
Total 4.00E-02 4.006E-02 0.1%
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Comparison with LST 2.0

The USACE Levee Screening Tool (LST) 2.0 is used to perform screening-level quantitative risk analysis
for the Levee Safety program [27]. The LST has been used to calculate screening-level risk for several
thousand levee segments and is considered a state-of-the-art risk analysis and portfolio management
tool. The LST 2.0 uses the computing failure mode approach for multiple failure modes [2].

A comparison between RMC-TotalRisk and LST 2.0 was made using a real levee segment from the USACE
Levee Safety portfolio!®. The levee has the following failure modes:

e Backwards erosion piping in the foundation

e Backwards erosion piping through the embankment
e Backwards erosion piping of the floodwall foundation
e Embankment erosion

e Embankment stability

o Floodwall instability

e Inoperability of closures

e Qvertopping

The LST 2.0 combines the multiple failure modes using the competing failure modes method. Results for
this comparison are provided in Table 117 and Table 118. The “Simulate Mean Risk Only” option [2] was
used to estimate risk with TotalRisk. RMC-TotalRisk very closely matches the results from the LST. The
minor differences are primarily due to differences in numerical integration approaches.

The LST computes risk using the Trapezoidal Rule with approximately 100 integration bins. Whereas,
TotalRisk uses the ASR method, which required 253 function evaluations to reach a tolerance of 1e~8
for this example. In addition, RMC-TotalRisk pre-processes the cumulative incident functions (CIFs)
needed for competing failure modes using 200 uniformly spaced hazard levels. The differences between
results are very small and would not lead to different investment decisions.

Table 117 — Comparison of RMC-TotalRisk to LST for incremental risk for levee segment with 8 Failure Modes.

Ex. Probability, a Conditional Mean, 7 Mean, E[N]
LST 1.378E-03 68.39 9.426E-02
RMC-TotalRisk 1.398E-03 66.84 9.345E-02
% Difference 1.4% 2.3% 0.9%

Table 118 — Comparison RMC-TotalRisk to LST for levee segment with 8 Failure Modes.

Risk Type LST, E[N] RMC-TotalRisk, E[N] % Difference
Incremental 9.426E-02 9.345E-02 0.9%
Background 3.042E-02 3.026E-02 0.5%
Total 1.247E-01 1.237E-01 0.8%

'8 The names of the levee segment and the inputs are not provided since the risk results are for internal

use only.
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Comparison with HEC-FDA

The flood damage reduction analysis software, HEC-FDA [15], has been the primary software used for
assessing expected annual flood damages in USACE since 1994. The underlying quantitative risk analysis
framework employed by HEC-FDA is documented in [28], and it is like RMC-TotalRisk. Both tools divide
the risk analysis inputs into four primary components: the hazard, transform, response, and
consequence functions.

However, there are some significant differences between the tools. RMC-TotalRisk is part of a larger risk
analysis software suite [29] which can import results from state-of-the-art flood hazard and
consequence tools, such as HEC-SSPY, RMC-BestFit [30], and LifeSim [31]. System response functions
can be derived from event tree analysis, or from one of the RMC toolboxes'®. Most significantly, RMC-
TotalRisk can perform risk analysis for complex systems that have multiple dependent system
components, each with multiple failure modes, and different joint consequence rules.

HEC-FDA does perform system risk, but the calculations assume that each system component is
independent, and that inundation areas do not overlap, and thus joint consequences are additive.

Consider a system with two levee segments, where the consequences of failure from each segment are
additive. Computing risk for multiple system components requires integration over a multidimensional
integral. Following the general risk formula provided in [2], the system risk becomes a two-dimensional
integral:

[o BN e)

E[C]q = f f (Cx () + GO} - iy (Cx (), Gy () - dx - dy Equation 65

—00 —00

where x is the hazard level for system component X; Cy (x) determines the consequences for the
hazard level x; y is the hazard level for system component Y; Cy (y) determines the consequences for
the hazard level y; and fxy(Cx(x), Cy(y)) is the joint PDF of the combined system consequences
occurring.

The complex integral in Equation 65 can be simplified. For any two random variables X and Y, the
expected value of the sum of those variables will be equal to the sum of their expected values:

E[Clq = E[Cx + Cy] = E[Cx] + E[Cy] Equation 66

Considering this, HEC-FDA computes system risk by estimating the expected damages at each individual
levee segment, then simply summing the expected damages at each segment to get the overall system
risk.

7 https://www.hec.usace.army.mil/software/hec-ssp/
18 https://www.rmc.usace.army.mil/Software/
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The expected value at each levee segment is computed using simple Monte Carlo integration with a
convergence rule based on the following criteria:

Zl_a/z ) O-C
E[C]-VN

where z is the standard Normal deviate for a confidence level @ = 0.05; E[C] is the expected
consequence from N samples; € = 0.01 is the relative tolerance; and N < 500,000.

<cg¢ Equation 67

RMC-TotalRisk allows for dependency between system components, and the user must also select the
joint consequence rule, which can be additive, average, maximum, or minimum. This means that RMC-
TotalRisk must use a more robust and efficient multidimensional integration approach. To avoid
computational limitations, RMC-TotalRisk uses an adaptive importance sampling algorithm called VEGAS
[7] [8]. More details on this method can be found in [1], [2], and [9]. This approach was verified in the
previous Multidimension Integration and Multiple System Components sections of this report.

A comparison between RMC-TotalRisk and HEC-FDA was performed using the ‘Beargrass Creek’ example
project provided in the HEC-FDA user guide [15] and training course®®. The Beargrass Creek study used
for that course consists of two highly urbanized damage reaches on the South Fork of the Beargrass
Creek. In this example project, there are two levee reaches per system, with four alternatives for
reducing flood risk:

e Without project condition

e Plan 1: Detention and channel improvement

e Plan 2: Floodwall only

e Plan 3: Detention, channel improvement, and floodwall.

For this comparison, results were evaluated at the current year (2021) and a future year (2030). Each
analysis in TotalRisk was performed using the “Simulate Mean Risk Only” option [2]. Results of the
comparison are provided in Table 119 and Table 120. For the most part the differences are relatively
minor. However, there are two alternatives that have differences greater than five percent, which
required additional analysis and justification.

Table 119 - Comparison of RMC-TotalRisk to HEC-FDA for Bear Creek 2021 EAD.

Alternative HEC-FDA, E[N] RMC-TotalRisk, E[N] % Difference
Without 952.48 916.41 3.8%
Plan 1 588.53 571.04 3.0%
Plan 2 551.85 512.91 7.1%
Plan 3 173.37 156.59 9.7%

19 https://www.hec.usace.army.mil/confluence/fdadocs/fdatutorials/flood-damage-assessment-course-

content
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Table 120 - Comparison of RMC-TotalRisk to HEC-FDA for Bear Creek 2030 EAD.

Alternative HEC-FDA, E[N] RMC-TotalRisk, E[N] % Difference
Without 1,097.25 1,111.27 1.3%
Plan 1 610.62 613.10 0.4%
Plan 2 723.74 730.40 0.9%
Plan 3 181.27 183.84 1.4%

An additional comparison was performed using Monte Carlo simulation with 10 million samples, and
results are provided in Table 121 and Table 122. RMC-TotalRisk has near perfect agreement with these

Monte Carlo results.

Table 121 - Comparison of RMC-TotalRisk to Monte Carlo simulation for Bear Creek 2021 EAD.

Alternative Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Without 916.75 916.41 0.0%
Plan 1 571.15 571.04 0.0%
Plan 2 513.35 512.91 0.1%
Plan 3 156.71 156.59 0.1%

Table 122 - Comparison of RMC-TotalRisk to Monte Carlo simulation for Bear Creek 2030 EAD.

Alternative Monte Carlo, E[N] RMC-TotalRisk, E[N] % Difference
Without 1,111.66 1,111.27 0.0%
Plan 1 613.16 613.10 0.0%
Plan 2 730.83 730.40 0.1%
Plan 3 183.98 183.84 0.1%

The Monte Carlo simulation results would tend to indicate that the primary differences between RMC-
TotalRisk and HEC-FDA are most likely due to differences in numerical integration techniques. Additional
sources of differences between software programs could be some combination of the following:

e Minor differences in how uncertainty is quantified in the nonparametric hazard functions. In the
Nonparametric Hazard Function section of this report, the differences between RMC-TotalRisk
were shown to be minor.

e The damage functions are automatically computed and aggregated in HEC-FDA. For this
example, those curves were extracted and combined as a composite consequence function in
RMC-TotalRisk. There could be minor differences in how this input is treated between the

software programs.

e There could be differences in linear interpolation transforms used between software. The
nonparametric hazard functions in RMC-TotalRisk were set to use a logarithm transform for
flows and a Normal z-variate transform for probabilities. It is unclear what is used in HEC-FDA.
Likewise, it is unclear if any transforms are used to improve interpolation on any of the other
input functions in HEC-FDA.




Conclusions

As demonstrated in this report, the computational methods used in RMC-TotalRisk have been verified.
The general numerical methods have been verified against known theoretical and analytical solutions,
and widely used, documented, and verified R packages. The input functions were verified with R and
Palisade’s @Risk. The risk analysis was verified using Monte Carlo simulation for a variety of complex
systems. In all cases, RMC-TotalRisk produced valid results.

Risk analysis results from RMC-TotalRisk were also compared with other risk analysis software and tools,
such as DAMRAE®, DamonRAE, LST, and HEC-FDA. In most cases, TotalRisk produced similar results that
differed by less than five percent difference. Most of the differences in precision between these various
tools were inconsequential and would not lead to a different risk-informed investment decision.
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